
An Efficient Solution to the Informed Principal Problem

Sergei Severinov ∗

First version: May 2004, This Version: December 2006

Abstract

In this paper I study mechanism design by an informed principal. I show that generically
this problem has an ex-post efficient solution. In the equilibrium mechanism, the informed
principal appropriates all expected social surplus, with each type of her getting all expected
social surplus conditional on that type. This outcome is supported as a perfect sequen-
tial equilibrium of the informed principal game when the joint probability distribution
from which the agents’ types are drawn satisfies two conditions: the well-known condition
of Cremer & McLean and Identifiability condition introduced by Kosenok and Severinov
(2002). Conversely, these conditions are necessary for an ex-post efficient outcome to be
attainable in an equilibrium of the informed principal game. Under these conditions only
our equilibrium outcome constitutes a neutral optimum, i.e. cannot be eliminated by any
reasonable concept of blocking (Myerson 1983). Identifiability and Cremer-McLean condi-
tions are generic when there are at least three agents, and none of them has more types
than the number of type profiles of the other agents.
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1 Introduction.

In this paper, I study mechanism design by an informed principal. Thus, I consider an en-
vironment in which the mechanism for aggregating private information and choosing a social
decision is designed by a party who, like other participants, possesses relevant private infor-
mation. Examples include the design of a selling procedure by a buyer or a seller who has
private information about her valuation or cost, different types of partnership problems (task
allocation, dissolution), mechanisms for providing public goods, etc. In these situations all
participants typically possess private information. For several reasons, hiring an outsider to
serve as a mechanism designer could be infeasible, and/or too costly and involve the dissipation
of a significant share of surplus to the latter. In particular, an outsider may not be able to
understand all the details of the environment and may not even recognize what constitutes an
efficient decision rule. It is reasonable to presume that this would be the case in financial mar-
kets, and in professional partnerships (for example, partnerships that involve doctors, lawyers,
or faculty members). Furthermore, in collusion context it is natural to presume that the col-
lusion mechanism has to be designed by one of the informed colluding parties. In contrast, in
standard mechanism design, the designer does not possess any private information about her
own or other participants’ types or preferences.

Since different types of the informed mechanism designer may offer different mechanisms,
the choice of a mechanism itself becomes a signal to the other participants (who I will refer to as
agents) regarding the designer’s type. This generates an inference process affecting the agents’
incentives and their willingness to participate in the mechanism. Consequently, the informed
principal problem is significantly harder to analyze than a standard mechanism environment.

The main result of this paper establishes that the informed principal problem generically
possesses an ex-post efficient solution. Genericity refers to the requirement that the probability
distribution of the agents’ type profiles (including the type of the informed principal herself)
satisfies two generic conditions: Identifiability condition introduced by Kosenok and Severinov
(2002), and the well-known condition of Crémer and McLean (1988). Precisely, I show that
under these conditions, the informed principal game has a sequential equilibrium with an
ex-post efficient outcome. In this equilibrium the informed principal obtains all expected
social surplus, with each type of her getting all social surplus conditional on that type. This
equilibrium is perfect sequential in the sense of Grossman and Perry (1986). This refinement
eliminates non-credible beliefs off the equilibrium path. Furthermore, I show that Identifiability
and Crémer-McLean conditions are necessary for ex-post efficiency to be attained with informed
principal. If either of these conditions fails then, under some profiles of the utility functions,
the informed principal game has no ex-post efficient Bayesian equilibrium.

An intuitive explanation of the Identifiability condition using the notion of the probability
distribution of agents’ reported type profile in a direct mechanism is provided immediately after
Definition 1. Briefly, it says that for any probability distribution q(.), q(.) 6= p(.), of the agents’
reported type profile, there is an agent-type such that the conditional probability distribution
of the other agents’ reported type profile corresponding to q could not have been induced by
this agent unilaterally deviating from truthtelling and reporting this type untruthfully. This
agent-type may be thought of as a non-deviator under q. Identifiability condition, as well as
Crémer-McLean condition, are generic when there are at least three agents and none of them
has more types than the number of type profiles of all other agents.

Having established the existence of an ex-post efficient mechanism in which each type of the
informed principal gets all social surplus conditional on her type, I then investigate the issue of
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uniqueness of this equilibrium outcome. Using the concept of perfect sequential equilibrium,
one can eliminate the outcomes in which the expected payoff of every type of the informed
principal is less than the expected social surplus conditional on that type, with some types
getting strictly less than the corresponding expected social surplus. However, this refinement
does not allow us to rule out the possibility of equilibrium outcomes in which the expected
payoff of some type of the informed principal is strictly greater than the expected social surplus
conditional on that type.

So, to obtain uniqueness, one has to turn to stronger solution concepts. In particular, I
show that our equilibrium outcome is an essentially unique neutral optimum. Neutral optimum
of Myerson (1983) constitutes a strong refinement of non-cooperative and cooperative solution
concepts, and will be discussed in more detail below.

To summarize, the contribution of this paper is two-fold. First, it shows that generically
the informed principal problem has an ex-post efficient solution. Second, it establishes that the
informed principal is able to extract all expected social surplus. To the best of my knowledge,
these results have not been exhibited in the literature before.

Necessary and sufficient conditions for full surplus extraction by an uninformed mechanism
designer have been derived by Crémer and McLean (1985) and (1988), and by McAfee and
Reny (1992). Thus, this paper extends the surplus extraction results to the informed principal
environment.

Mechanism design by an informed principal has been studied by several authors. In the
pioneering work of Myerson (1983), and Maskin and Tirole (1990) and (1992), the authors have
proposed several solution concepts for the problem and have established the corresponding
existence results.

Maskin and Tirole (1990) and (1992) (MT in the sequel) focus on the environments with
one principal and one agent and either an independent type distribution (in private values
case) or no private information on the agent’s side (in common values case where the agent’s
utility depends on the principal’s type). MT suggest two efficiency criteria: weak interim
efficiency (WIE) under common values and strong unconstrained Pareto optimum (SUPO)
under private values. Roughly, these concepts require the allocation to be the best for the
principal (maximize the weighted sum of the payoffs of her different types) subject to the agent’s
incentive compatibility and individual rationality constraints. Both concepts are weaker than
ex-post efficiency.

MT characterize the equilibrium outcomes with quasilinear utility functions. In this case,
the fact that the principal’s information is private does not affect the outcome. Specifically,
there is a unique perfect Bayesian equilibrium in which every type of the principal implements a
standard second-best mechanism optimal for that type. The equilibrium mechanism is incentive
compatible even if the agent knew the principal’s type (in Myerson’s terminology, it constitutes
a strong solution), but it is typically not ex-post efficient. Yilankaya (1999) establishes a similar
result in bilateral trade environment where only a single unit of the good is traded. He shows
that in equilibrium all types of the informed seller use a fixed-price mechanism. Again, this
outcome it not ex-post efficient but is ex-ante optimal, i.e. it maximizes the seller’s ex-ante
expected utility subject to the buyer’s incentive constraints.

Recently, Mylovanov (2005a) has extended the one-agent characterization results of MT and
Yilankaya (1999) to a quasilinear environment with multiple agents. Furthermore, Mylovanov
(2005b) shows that with independently distributed types and private values, the equilibrium
mechanism is not even ex-ante optimal generically in the space of the utility functions, i.e. it
does not maximize the ex-ante expected utility of the informed principal subject to the agents’
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incentive constraints.
Thus, the results of this paper differ significantly from those in the literature. This is due

to the fact that I relax the assumption of independently distributed types and allow them to be
stochastically dependent. I also require that the number of players is at least three (i.e. there
are at least two agents besides the informed principal) as Identifiability would not be generic
otherwise, while Maskin and Tirole (1990), (1992) and Yilankaya (1999) consider two-player
(one principal and one agent) situations.

The rest of the paper is organized as follows. In section 2 I develop the model. In section
3 the main result is established. Section 4 is devoted to refinements. Section 5 concludes. All
the proofs are relegated to an Appendix.

2 Model and Preliminaries

The economy consists of n ≥ 3 privately informed agents, who need to take a social decision
affecting everyone’s utility. The economic environment, the mechanism for implementing social
decisions, and the procedure for choosing the mechanism are described below.

Agent i’s privately known information, or type, belongs to the type space Θi ≡ {θ1
i , ..., θ

mi
i }

of cardinality mi < ∞. A generic element of Θi will be denoted by θi or θ′i. A state of the
world is characterized by a type profile θ = (θ1, ..., θn). The set of type profiles is given
by Θ ≡

∏
i=1,..n Θi, with cardinality L ≡

∏
i=1,...,n mi. When focussing on agent i, we will

use the notation (θ−i, θi) for the profile of agent-types, where θ−i stands for the profile of
types of agents other than i. Let Θ−i =

∏
l 6=i Θl, L−i =

∏
l 6=i ml, Θ−i−j =

∏
l 6∈{i,j} Θl, and

L−i−j =
∏

l 6∈{i,j} ml. A generic element of Θ−i−j is denoted by θ−i−j .
The (true) probability distribution of the agents’ type profile θ is common knowledge and

is denoted by p(θ), with pi(θi) and pi,j(θi, θj) denoting the corresponding marginal probability
distribution of agent i’s type and the marginal probability distribution of types of agents i and
j, respectively. Also, p−i(θ−i|θi) (pj(θj |θi)) denotes the probability distribution of type profiles
of agents other than i (agent j’s type) conditional on the type of agent i. A similar system of
notation is used for other probability distributions over Θ that we operate with below. The
set of all probability distributions over Θ is denoted by P(Θ).

We assume that pi,j(θi, θj) > 0 for any θi ∈ Θi, θj ∈ Θj of any two agents i and j. This
condition is clearly generic.

The set of public decisions is denoted by X, with x denoting a generic element of X. Agent
i’s utility function is quasilinear in the decision x and transfer ti that she receives, and is
given by ui(x, θ) + ti. Without loss of generality, an agent’s reservation utility (i.e. her utility
from the outside option) is normalized to zero.1 A (social) decision rule x(.) is a function
mapping the type space Θ into X, the set of public decisions2. Let ti(.) : Θ 7→ R be a transfer
function to agent i, and t(.) = (t1(.), ..., tn(.)) denote a collection of transfer functions to all
agents. An allocation profile is a combination of a decision rule x(.) with a collection of transfer
functions t(.). A decision rule x(.) is ex-post efficient if x(θ) ∈ arg maxx∈X

∑n
i=1 ui(x, θ) for

all θ ∈ Θ, i.e. x(θ) maximizes ex-post social surplus
∑n

i=1 ui(x, θ). Since one can always
cause the agents to take their outside options, we can without loss of generality assume that

1Suppose that agent i’s utility from her outside option is equal to wi(θ). Such environment is equivalent to
the environment where i’s utility function is given by ui(x, θ)−wi(θ)+ ti and her outside option is 0. Note that
the sets of ex-post efficient decision rules and the notions of social surplus are the same in both environments.

2Randomization in public decisions is implicitly allowed, since X can be regarded as a set of probability
distributions over some set of “pure” outcomes.
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maxx∈X
∑n

i=1 ui(x, θ) ≥ 0 for all θ ∈ Θ.
The mechanism for aggregating the agents’ private information and choosing a public deci-

sion is designed by one of the agents after she has learned her private information. This agent
-acting as an informed principal- has the authority to propose and implement a mechanism.
Without loss of generality, let agent 1 play the role of the informed principal.3 A mechanism
M offered by agent 1 consists of a set of strategy spaces S1, ..., Sn for all agents, including the
mechanism designer - agent 1, and an outcome function g :

∏
i=1,...,n Si 7→ X ×Rn mapping

the set of agents’ strategy profiles into the set of social decisions and transfers.4

The mechanism is implemented via the following informed principal game Γ:

• Stage 1. All agents learn their types.

• Stage 2. Agent 1 proposes mechanism M .

• Stage 3. Agents 2 to n simultaneously decide whether to participate in the mechanism,
or to reject it.

• Stage 4. If all agents have agreed to participate, the mechanism M is implemented. The
outcome is then determined by the agents’ strategy choices and the outcome function
g(.) of M . If at least one of the agents rejects the mechanism, it is not implemented and
all agents get their reservation payoffs.

Most contributions in the literature (e.g. Myerson (1983), Maskin and Tirole (1990) and
(1992)) use the same extensive form game Γ in their analysis of the informed principal problem.
The informed principal’s strategy in this game involves choosing a mechanism M in stage 1,
and a strategy s1 ∈ S1 in M at stage 4. A strategy of agent i ∈ {2, ..., n} consists of a
participation decision at stage 2 and her choice of strategy si ∈ Si in mechanism M at stage 4.

Let Z denote the set of feasible mechanisms. We require every mechanism M ∈ Z to
possess a sequential equilibrium for any profile of agents’ beliefs about each other. This can
be ensured by simply assuming that all mechanisms in Z are finite, i.e. have a finite set of
outcomes. Obviously, the latter assumption does not restrict the set of implementable decision
rules, since the type space is finite.

The default assumption in this paper is that the set of feasible mechanisms Z is finite.
However, all the results and proofs also hold in the case of an infinite Z. The only difference is
that, with infinite Z, we have to use perfect Bayesian solution concept in the sufficiency part
of Theorem 1, instead of sequential equilibrium. Perfect Bayesian equilibrium does not restrict
the beliefs off the equilibrium path, while sequential equilibrium requires such beliefs to be
consistent in the sense of Kreps and Wilson (1982). But the consistency of the off-equilibrium
beliefs in sequential equilibrium is defined for finite games only.

Since there are no outsiders, any mechanism M ≡ (S1, ..., Sn, g(.)) in Z has to balance
the budget. Precisely, let tgi (s1, ...sn) denote the transfer to agent i when the strategy profile

3The problem of choosing the mechanism designer is outside the scope of this paper. However, it is worth
noting that our model applies if the mechanism designer is chosen at an ex-ante stage, i.e. before the agents
have learned their information.

4The restriction to deterministic outcome functions is without loss of generality. First, as mentioned above,
randomization over social alternatives is implicitly allowed. Second, the restriction to deterministic transfers is
without loss of generality because the agents are risk-neutral and only care about the expected value of their
transfers. Therefore, for every mechanism with stochastic transfer rule, there is a payoff-equivalent mechanism
with a deterministic transfer rule.
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(s1, ...sn) is chosen by the agents. Then M has to satisfy:

n∑
i=1

tgi (s1, ..., sn) = 0 for all (s1, ..., sn) ∈ S1 × ...× Sn. (1)

The assumption that the mechanism is not implemented whenever at least one agent refuses
to participate in it, reflects that participation in the mechanism is voluntary. Any agent can
withdraw from it and obtain her reservation utility if she wishes to do so. This assumption
does not affect our results, and it is straightforward to replace is with an alternative one
which still allows any agent to withdraw but does not require a dissolution when only some
agents drop out.5 Indeed, our equilibrium mechanism involves voluntary participation by all
agent-types and transfers maximal possible social surplus to agent 1. Therefore, under any
alternative assumption that does not require a unanimous acceptance for the mechanism to be
implemented, agent 1 will still offer the same equilibrium mechanism and all agent types will
accept this mechanism on the equilibrium path.

Let b3
−i(θ−i|θi,M) denote agent i’s beliefs about the type profile of the other agents at the

beginning of stage 3, i.e. b3
−i(θ−i|θi,M) is the probability that agent-type θi assigns to the

type profile θ−i after agent 1 offers mechanism M . Similarly, b4
−i(θ−i|θi,M) denotes agent i’s

beliefs about the type profile of the other agents at the beginning of stage 4.
In general, a solution to the informed principal problem is a collection of mechanisms

{M(θ1)}θ1∈Θ1 such that M(θ1) ∈ Z is offered by type θ1. However, by the Inscrutability
Principle of Myerson (1983), we can assume that on the equilibrium path of Γ all types of agent 1
offer the same mechanism M . Then the other agents would not infer any additional information
from the choice of the mechanism M at stage 2, and agent-type θi’s beliefs b3

−i(θ−i|θi,M) on
the equilibrium path would be equal to the posterior p−i(θ−i|θi). The Inscrutability Principle
holds because for any profile of mechanisms {M(θ1)}θ1∈Θ1 offered by different types of agent 1
at stage 2, there is an outcome-equivalent mechanism M̂ which is offered by all types of agent
1 and which involves agent 1 revealing her type only at the implementation stage 4. Such
mechanism is called inscrutable. For detailed proof, see Myerson (1983).

Further, by the Revelation principle, for any equilibrium of any mechanism M ∈ Z there
exists an outcome-equivalent equilibrium of a direct incentive compatible mechanism.6 This is
easily shown by applying the proof of the Revelation Principle at stages 3 and 4 of Γ.

Thus, the Inscrutability and the Revelation Principles imply that, without loss of generality,
we can assume that on the equilibrium path of Γ, all types of agent 1 offer a direct mechanism
(x(.), t(.)) which is incentive compatible under the beliefs p−i(θ−i|θi). Since this mechanism is
inscrutable, the equilibrium beliefs b3

−i(.|θi, (x(.), t(.))) of any agent-type θi at stage 3 of Γ are
equal to p−i(θ−i|θi).

This restriction on the equilibrium path is useful for describing an equilibrium mechanism
in Γ. However, to prove that a certain mechanism is offered in equilibrium, we have to con-
sider all possible deviations by agent 1, including deviations to non-direct and non-inscrutable
mechanisms, i.e. mechanisms which are offered by some, but not all types of agent 1. Such

5For example, for every subset A of the set of agents {1, ..., m}, the mechanism designer could specify a
submechanism (SA

1 , ..., SA
n , gA) which would be implemented when only the agents from the set A accept in

stage 3. In this mechanism, SA
i is a strategy space for agent i ∈ A while the outcome function gA :

∏
i∈A SA

i 7→
XA ×R#A maps the participating agents’ strategy profiles into XA ⊂ X, the set of social decisions which are
feasible with this set of participants.

6A direct mechanism can be represented as an outcome function (x(.), t(.)) from the space of type profiles
Θ into the allocation space (X,Rn). Incentive compatibility in this case requires truth-telling to be an optimal
strategy for each agent-type θi given her beliefs b4

−i(θ−i|θi, M).
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a deviation would cause the other agents to update their prior beliefs in a non-trivial way in
stages 3 and 4 of Γ.

We start by describing the incentive compatibility and individual rationality constraints
which an inscrutable direct mechanism (x(.), t(.)) has to satisfy. First, an agent-type θi will
accept the mechanism (x(.), t(.)) only if her expected payoff from this mechanism is no less
than her reservation payoff. Since the agents do not update their beliefs when an inscrutable
mechanism is offered, this implies that (x(.), t(.)) must satisfy the following Interim Individual
Rationality constraints IRi(θi) for all i ∈ {1, ..., n} and θi ∈ Θi:

Ui(θi|(x(.), t(.))) ≡
∑

θ−i∈Θ−i

(ui(x(θ−i, θi), (θ−i, θi)) + ti(θ−i, θi)) p−i(θ−i|θi) ≥ 0. (2)

Further, (x(.), t(.)) is incentive compatible if it satisfies the following ICi(θi, θ
′
i) constraints for

all i ∈ {1, ..., n} and θi, θ
′
i ∈ Θi:∑

θ−i∈Θ−i

(
ui(x(θ−i, θi), (θ−i, θi)) + ti(θ−i, θi)− ui(x(θ−i, θ

′
i), (θ−i, θi))− ti(θ−i, θ

′
i)

)
p−i(θ−i|θi) ≥ 0.

(3)

Note that IR and IC constraints must also hold for agent 1, the mechanism designer, as
otherwise some types of agent 1 would either prefer not to offer any mechanism, rather than
to offer (x(.), t(.)), or would not report truthfully in stage 4. Finally, given that (x(.), t(.)) is
a direct mechanism, the budget balance constraint (1) can be rewritten as follows:

n∑
i=1

ti(θ) = 0 for all θ ∈ Θ. (4)

We will say that a direct mechanism (x(.).t(.)) is admissible if it is budget balanced, incen-
tive compatible and individually rational, i.e. satisfies (2)-(4) for all θ ∈ Θ, i ∈ {1, ..., n}, and
θi ∈ Θi.7 The main issue in the context of the informed principal problem is which admissible
mechanism will be chosen by the informed principal. Since different types of the informed
principal may have different, sometimes opposite, preferences among the social alternatives,
the equilibrium mechanism has to carefully balance the interests of all her types. Of particular
interest is whether ex-post efficiency is attainable in the informed principal framework. I will
address this question in the next Section.

3 Main Result

This section demonstrates that, generically, the informed principal problem has an ex-post
efficient solution, with all expected social surplus from the mechanism obtained by agent 1,
the informed principal. More specifically, each type θ ∈ Θ1 of agent 1 gets all expected social
surplus from an ex-post efficient decision rule conditional on her type. The latter is denoted
by V1(θ1) and is formally given by the following expression:

V1(θ1) ≡
∑

θ−1∈Θ−1

max
x∈X

∑
i∈{1,...,n}

ui(x, (θ−1, θ1))

 p−1(θ−1|θ1). (5)

7In the sequel, incentive compatibility and individual rationality constraints of a mechanism are understood
to be with respect to posterior beliefs p−i(.|θi), unless indicated otherwise.
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I will show that this outcome is supported as a sequential equilibrium of Γ surviving the perfec-
tion refinement of Grossman and Perry (1986) and as a unique neutral optimum. These results
hold under two generic conditions on the prior p(.), the Identifiability condition introduced by
Kosenok and Severinov (2002) and the well-known condition of Crémer and McLean (1985)
and (1988).

Definition 1 Identifiability. The probability distribution p(.) of the agents’ type profile is
identifiable if for any probability distribution q(.) ∈ P(Θ), q(.) 6= p(.), there is an agent i and
her type θ′i, with qi(θ′i) > 0, such that for any collection of nonnegative coefficients {cθiθ′i

},
θi, θ

′
i ∈ Θi, we have:

q−i(.|θ′i) 6=
∑

θi∈Θi

cθiθ′i
p−i(.|θi). (6)

To describe the Identifiability condition intuitively, consider the agents’ type reporting strate-
gies in a direct mechanism. Agent i’s reporting strategy is a collection of mi probability
distributions over i’s type space Θi -one for each type of i. From the ex-ante point of view, i.e.
given that the agents’ type profile is distributed according to the prior p(.), a collection of all
agents’ reporting strategies induces a probability distribution over reported type profiles. So,
consider the set of all probability distributions over Θ. The Identifiability condition requires
that for each probability distribution q(.) over Θ, q(.) 6= p(.), there exists an agent i and her
type θ′i such that i cannot induce the reported type profile of the other agents to be distributed
according to q−i(.|θ′i) by following any reported strategy, when all other agents report truth-
fully. That is, agent i does not have a reporting strategy such that when i reports type θ′i
according to this strategy and the other agents report their types truthfully, the conditional
probability distribution of the other agents’ type profiles is equal to q−i(.|θ′i). Thus, agent-type
θ′i could be thought of as a non-deviator type under q(.). Identifiability of p(.) requires that
for any q(.) 6= p(.), the set of non-deviator agent-types is non-empty. Additional details can
be found in Kosenok and Severinov (2002).

Next, consider the condition of Crémer and McLean (1985) and (1988) under which the
uninformed mechanism designer can extract all social surplus in a Bayesian mechanism:

Definition 2 Say that Crémer-McLean condition holds for agent i if for any type θ′i ∈ Θi,
p−i(.|θ′i) cannot be expressed as a convex combination of p−i(.|θi), θi 6= θ′i, i.e. for any collection
of nonnegative coefficients cθiθ′i

, where θi, θ
′
i ∈ Θi, we have:

p−i(.|θ′i) 6=
∑

θi∈Θi\θ′i

cθiθ′i
p−i(.|θi).

Kosenok and Severinov (2002) have shown that Identifiability condition holds generically
when there are at least three agents and at least two of them have weakly less types than the
number of type profiles of all other agents (when there are three agents, it is also required that
at least one of them has at least three types). It is well-known that Crémer-McLean condition
for agent i holds generically when mi ≤

∏
j 6=i mj . So, a generic p(.) is identifiable and satisfies

Crémer-McLean condition for all i if
∏

j 6=i mj ≥ mi also for all i.
Kosenok and Severinov (2002) have established the following result for the case when the

mechanism is designed by an uninformed principal:
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Theorem (Kosenok and Severinov). An ex-post efficient, interim individually rational, ex-post
budget balanced Bayesian mechanism exists under any profile of the utility functions (quasi-
linear in transfers) if and only if p(.) is identifiable and Crémer-McLean condition holds for
all agents i = 1, ..., n. Furthermore, when these conditions hold, it is possible to attain any
distribution of expected social surplus between agent-types.

An implication of this Theorem is that, under Identifiability and Crémer-McLean con-
ditions, there exists an ex-post efficient, incentive compatible, budget-balanced mechanism
M∗ = (x∗(.), t∗(.)) in which the expected payoff of any type θ1 ∈ Θ1 of agent 1 is equal to
V1(θ1), the expected social surplus conditional on agent 1’s type θ1 (see expression (5)), while
every type of any other agent gets her reservation utility of zero.8

Mechanism M∗ is a natural candidate for a solution to the informed principal game Γ.
My first result shows that this mechanism can be supported as part of a sequential equilibrium
of Γ.

Let us explain why this is so intuitively. To show that the mechanism M∗ is offered in
equilibrium, I have to consider all possible deviations in the choice of a mechanism at stage 2
and ascertain that no type of agent 1 can benefit from any such deviation. So suppose that
at stage 2 agent 1 deviates from M∗ and offers some mechanism M ∈ Z. Then, there is a
system of agents’ beliefs {b̂3

−i(θ−i|θi,M))}θi∈Θi,i∈{2,...,n} and an equilibrium strategy profile σ̂

in mechanism M under these beliefs, such that the beliefs {b̂3
−i(θ−i|θi,M))}θi∈Θi,i∈{2,...,n} put

a positive weight only on those types of agent 1 who obtain the largest payoff increment when
equilibrium σ̂ is played in M compared to their putative equilibrium payoffs V1(.) that they
obtain in M∗. A standard fixed point argument can be used to show this. But then any type
θ1 of agent 1 who is assigned a positive probability by the beliefs {b̂3

−i(θ−i|θi,M)}θi∈Θi,i∈{1,...,n}
cannot get a strictly higher payoff in M than the payoff V1(θ1) which she gets in the mechanism
M∗ and which is equal to the expected maximal social surplus conditional on agent 1’s type
being θ1. For, if the opposite was true, then all types of agent 1 who deviate to M would
get more than the total social surplus generated in M , and therefore some agent-type θ′j ,
j ∈ {2, ..., n}, would get a strictly negative expected payoff in M . However, this would violate
the participation constraint of θ′j , as she would be better off refusing to participate in M .
Hence, after a deviation to M no type θ1 of agent 1 gets a payoff strictly exceeding V1(θ1), and
so no type has an incentive to deviate from M∗. Formally, we have:

Theorem 1 Sufficiency. Suppose that p(.) is identifiable and Crémer-McLean condition
holds for all i ∈ {1, ..., n}. Then the informed principal game Γ possesses a sequential equilib-
rium, E∗, in which all types of agent 1 offer ex-post efficient mechanism M∗ and the expected
payoff of each type θ1 ∈ Θ1 of agent 1 is equal to V1(θ1), the expected maximal social surplus
conditional on θ1.

Necessity. If either p(.) is not identifiable or Crémer-McLean condition fails for some
i ∈ {1, ..., n}, then for some profiles of the utility functions the informed principal game does
not have an ex-post efficient Bayesian equilibrium.9

8For detailed proof and the construction of the mechanism, see Kosenok and Severinov (2002).
9In the necessity part of Theorem, I use a weaker solution concept of Bayesian equilibrium, in contrast to

sequential equilibrium used in the sufficiency part. This is done to ascertain that the non-existence of an efficient
outcome in the informed principal game is caused by the fundamental implementability problem, rather than
by specific requirements of sequential or perfect Bayesian equilibrium concepts.
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Theorem 1 is stated under our default assumption that the space of feasible mechanisms Z is
finite. As mentioned above, it also holds when Z is infinite, but in the latter case we need
to use perfect Bayesian instead of sequential equilibrium solution concept in the sufficiency
part. The proof applies verbatim, with the exception of establishing the consistency of the off-
equilibrium beliefs, which is required by the definition of sequential equilibrium, but becomes
redundant under perfect Bayesian concept.

4 Refinements

It is well-known that the sequential equilibrium concept allows a broad leeway in the specifi-
cation of beliefs off the equilibrium path, which could give rise to a multiplicity of equilibria.
To address this issue, in this section I will consider two refinements of sequential equilibrium.
First, I will demonstrate that our equilibrium E∗ is perfect sequential (Grossman and Perry
1986).10 In fact, all equilibria with the same outcome as in E∗, where agent 1 offers mecha-
nism M∗ with probability 1 and all agents truthfully report their types, survive this refinement.
Second, I will show that this equilibrium outcome is a unique “neutral optimum.” The latter
solution concept was introduced by Myerson (1983) and will be described in detail below.

The concept of perfect sequential equilibrium augments the notion of sequential equilibrium
by imposing an additional restriction on the beliefs (‘credibility’) and strategies (‘perfection’)
off the equilibrium path. This restriction requires subjecting an equilibrium E′ of Γ to the
following ‘test.’ For any mechanism M off equilibrium in E′, we look for a set of types K ⊆ Θ1

of agent 1 and a strategy profile σ̂M in M s.t.: (i) the strategy profile σ̂M constitutes an
equilibrium in M given that all agents other than 1 believe that agent 1’s type belongs to K11,
(ii) every type of agent 1 from the set K gets a higher payoff, and at least one type from K
gets a strictly higher payoff, in mechanism M when the strategy profile σ̂M is played than in
the equilibrium E′. An equilibrium E′ is perfect sequential when no such mechanism M and
set K exist. Applying this refinement, we obtain:

Theorem 2 The equilibrium E∗ of Theorem 1 and any sequential equilibrium of Γ with the
same outcome as E∗ i.e. any equilibrium in which agent 1 offers M∗ and all agents follow
truthtelling strategies with probability 1, is perfect sequential in the sense of Grossman and
Perry (1986).

A couple of remarks are in order at this point. Applying perfect sequential equilibrium
refinement, we can also eliminate any equilibrium Ẽ of Γ in which the expected payoff of
every type θ1 ∈ Θ1 of agent 1 is less than V1(θ1), the expected maximal surplus conditional
on her type, with at least one type, θ̄1, earning strictly less than V1(θ̄1). Specifically, such
an equilibrium is undermined by all types of agent 1 offering mechanism M∗ followed by
acceptance of M∗ and truthful type announcements by all agents. This continuation play is
supported by ‘credible’ beliefs at stage 3 that all types of agent 1 have offered M∗.12

10Grossman and Perry (1986) define perfect sequential equilibrium for a 2-player signalling game in which
only one party, the sender, has private information. However, it is straightforward to extend their concept to
an n-player setting and apply it to our informed principal game Γ. Farrell (1993) proposes a similar refinement,
neologism-proofness, for cheap talk games.

11The belief formation procedure is described precisely in the proof of Theorem 2 in the Appendix.
12If the mechanism M∗ is offered on the equilibrium path of Ẽ with a positive probability, then to eliminate

Ẽ we need to expand our set of feasible mechanisms by allowing cheap talk messages to accompany an offer
of a mechanism by agent 1. Then Ẽ is undermined by a new mechanism M∗∗ which is identical to M∗ and,
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However, this does not imply the uniqueness of a perfect sequential equilibrium outcome of
Γ. In particular, we cannot rule out equilibria in which the expected payoff of at least one type
θ̄1 ∈ Θ1 of agent 1 strictly exceeds V1(θ̄1), the expected social surplus conditional on θ̄1. This
is so because agent-type θ̄1 would strictly lose from a deviation to M∗, if prior beliefs were
maintained and truth-telling strategies were played in M∗. She would also strictly lose from a
deviation to any other mechanism M ′, if such deviation was associated with prior beliefs and
an equilibrium eM ′

in which every type θ1 of agent 1 earns V1(θ1). Therefore, the credibility
restriction would require agents’ beliefs to be different from the prior after a deviation to the
mechanism M∗ or the mechanism M ′. But with credible beliefs different from the prior, truth-
telling may no longer be an equilibrium in M∗ and eM ′

may no longer be an equilibrium in
M ′, while new equilibria in these mechanisms may not be attractive to any types.

Nevertheless, uniqueness of our equilibrium outcome obtains once we turn to a stronger
solution concept - that of neutral optimum of Myerson (1983). This solution concept is based
on the notion of blocking. The idea is to identify a set of incentive compatible mechanisms in
which the payoffs obtained by the principal (agent 1) are sufficiently high that no subset of
her types would prefer a coordinated deviation to some other mechanism.

To define neutral optimum, let us abstract from the specifics of the game form of Γ for
a moment, and consider some incentive-compatible direct mechanism M̃ ≡ (x̃(.), t̃(.)). As
pointed out above, any outcome implemented through any mechanism can be attained as
an outcome of a direct incentive compatible inscrutable mechanism. Therefore we can restrict
consideration to such mechanisms. Let {Ui(θi|M̃)}θi∈Θi

denote the vector of expected payoffs of
agent i ∈ {1, ..., n} in M̃ , i.e. Ui(θi|M̃) =

∑
θ−i∈Θ−i

(ui(x̃(θ−i, θi), θ−i, θi)+ t̃i(θ−i, θi))p(θ−i|θi).
Further, let B(Γ) denote the set of blocked expected payoff vectors of agent 1 in Γ according

to some notion of blocking B. Following Myerson (1983), we will allow for any notion of
blocking B(Γ) that satisfies the following four axioms.

Axiom 1 (Domination) For any vectors w(.) and z(.) in Rm1, if w(.) ∈ B(Γ), and z(θ1) ≤
w(θ1) for every θ1 ∈ Θ1, then z(.) ∈ B(Γ).

In words, if the vector w(.) of expected payoffs of agent 1 is blocked according to B(Γ), and
the vector z(.) is dominated by w(.), then z(.) must also be blocked according to B(Γ).

Axiom 2 (Openness) B(Γ) is open in the set of feasible expected payoff vectors FS = {z(.) ∈
Rm1

+ :
∑

θ1∈Θ1
z(θ1)p1(θ1) ≤

∑
θ∈Θ p(θ) maxx∈X

∑
i∈{1,...,n} ui(x, θ)}.13

Axiom 3 (Extension) Let Γ̄ be an informed principal game which differs from Γ only because
its feasible action set X̄ includes the feasible action set X of Γ, i.e. X ⊂ X̄. Then B(Γ) ⊂
B(Γ̄).

Axiom 4 (Strong Solutions) Suppose that mechanism M = (x(.), t(.)) is incentive compatible
and individually rational given the type of agent 1, i.e. it satisfies IR and IC constraints

additionally, has a cheap-talk message mn associated with it. This cheap talk message mn from agent 1, a
‘neologism’ in the terminology of Farrell (1993), should mean the following: “I offer mechanism M∗∗ with
probability 1, no matter what my type is.” When all agents believe this message, M∗∗ possesses a truthtelling
equilibrium in which a type θ1 of agent 1 earns V1(θ1), and so offering M∗ is optimal for any θ1 ∈ Θ1.

13Here we make a slight departure from Myerson’s definition which requires B(Γ) to be open in Rm1 . Myerson’s
proof of existence of a neutral optimum and characterization results apply verbatim with our notion of openness.
It appears more natural to require B(Γ) to be open relative to the set of feasible payoff vectors FS.
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(2)-(3) of agent 1 for all θ1 ∈ Θ1, as well as the following individual rationality and incentive
constraints for all i ∈ {2, ..., n}, θi, θ

′
i ∈ Θi and θ1 ∈ Θ1:∑

θ−1−i∈Θ−1−i

(ui(x(θ1, θ−1−i, θi), (θ1, θ−1−i, θi)) + ti(θ1, θ−1−i, θi)) p−1−i(θ−1−i|θ1, θi) ≥

max

0,
∑

θ−1−i∈Θ−1−i

(
ui(x(θ1, θ−1−i, θ

′
i), (θ1, θ−1−i, θi))− ti(θ1, θ−1−i, θ

′
i)

)
p−1−i(θ−1−i|θ1, θi)


(7)

Suppose also that there does not exist another admissible mechanism M ′ satisfying U1(θ1|M) ≤
U1(θ1|M ′) for all θ1 ∈ Θ1 with strict inequality for at least one θ1. Then mechanism M is
called a strong solution. A strong solution cannot be blocked i.e., U1(θ1|M) 6∈ B(Γ).

A blocking concept based on Axioms 1-4 identifies some set of blocked payoff vectors B(Γ)
of agent 1. However, these Axioms do not pin down B(Γ) uniquely. Rather, there may be
several different sets of blocked payoff vectors. So, let H be the set of all blocking concepts
satisfying Axioms 1-4, and let B∗(Γ) = ∪B(Γ)∈HB(Γ), i.e. B∗(Γ) denotes the union of all sets
of blocked payoff vectors. Thus, a payoff vector is not in B∗(Γ) if it cannot be blocked by any
concept of blocking satisfying Axioms 1-4.

Definition 3 (Myerson 1983) A mechanism M̃ is a neutral optimum of the informed principal
game Γ if it is admissible (i.e. satisfies (2)-(4))14 and the vector {U(θ1|M̃)}θ1∈Θ1 of expected
payoffs of agent 1 does not belong to B∗(Γ).

Axioms 1-4 are fairly natural and intuitive, and so the concept of a neutral optimum is
not unnecessarily restrictive. Myerson (1983) has shown that a neutral optimum exists for
a class of Bayesian games which includes our informed principal game Γ (see Theorem 6 in
his paper). He has also provided a characterization of neutral optima, and established that a
neutral optimum outcome can be supported as a sequential equilibrium. At the same time,
the relationship between the set of neutral optima and the set of perfect sequential equilibrium
outcomes is unclear. Therefore the next Theorem -which establishes generic uniqueness of the
neutral optimum outcome in the game Γ- complements Theorem 2 without subsuming it.

Theorem 3 Suppose that p(.) is identifiable and Crémer-McLean condition holds. Then a
mechanism (x(θ), t(θ)) is a neutral optimum of the informed principal games Γ if and only if
it is admissible, ex-post efficient and the expected payoff of any type θ1 ∈ Θ1 of agent 1, the
informed principal, is equal to V1(θ1), the expected maximal social surplus conditional on her
type.

Thus, generically, only mechanism M∗ or its equivalent, i.e. another ex-post efficient mech-
anism which provides the same expected payoff to each agent-type as in the mechanism M∗,

14Myerson’s definition of neutral optimum does not explicitly require individual rationality which is a part
of our definition of admissibility. However, Myerson’s notion of incentive compatibility includes individual
rationality. See p. 1772 of Myerson (1983). Also note that our definition of an admissible mechanism in Γ
includes ex- post budget balance (4). This does not introduce an additional restriction on the notion of neutral
optimum. Rather, this is a restriction on the set of feasible allocations in our informed principal game Γ.
Specifically, the set of feasible allocations of Γ is given by {(x, t1, ..., tn)|x ∈ X, (t1, ..., tn) ∈ Rn,

∑
i=1,...,n ti = 0}.
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constitute neutral optima.15 It follows that all types of all agents 2 to n obtain their reservation
payoffs of zero in a neutral optimum.

To conclude, it is worth noting that in Bayesian mechanism design uniqueness of an equilib-
rium outcome is typically hard to obtain. So, the uniqueness of an equilibrium outcome in our
case, even under a stronger solution concept, provides a desirable robustness check confirming
that we have focussed on the right equilibrium and the right mechanism M∗.

5 Conclusions.

This paper demonstrates that generically an informed principal will implement an ex-post
efficient mechanism and extract all expected social surplus. For this outcome to obtain as a
perfect sequential equilibrium and a unique neutral optimum of the mechanism-choice game, it
is necessary and sufficient that the probability distribution of the agents’ type profile satisfies
Identifiability and Crémer-McLean conditions. These conditions are generic when there are at
least three players (i.e. at least two other agents besides the informed principal), and none of
them has more types than the number of type profiles of the others.

These results can be applied to study a number of economic settings where informed princi-
pal problem arises naturally, such as auctions, resale, dissolution of partnerships and allocations
of tasks in them. I intend to explore these applications in future research.

6 Appendix

Proof of Theorem 1.
Sufficiency Part. A sequential equilibrium is an assessment, i.e. a collection of sequen-

tially rational strategies and consistent beliefs of all agents (see Kreps and Wilson (1982)).
Agent 1’s strategy in the informed principal game Γ is an offer of a mechanism in stage 2 and
a type report in stage 4. A strategy of agent i ∈ {2, ..., n} is an acceptance/rejection decision
in stage 3 and a type report in stage 4. The agents form beliefs at stage 3 after a mechanism
is offered, and in stage 4 if every agent accepts the offered mechanism.

Our candidate equilibrium strategies prescribe the following play on the equilibrium path.
All types of agent 1 offer the mechanism M∗ in stage 2. In stage 3, all types of agents 2
to n agree to participate in M∗. In stage 4, if the mechanism M∗ has been accepted by all
agents, then all agents including agent 1 report their types truthfully. Equilibrium beliefs
b3
−i(θ−i|θi,M

∗) in stage 3 after M∗ is offered and b4
−i(θ−i|θi,M

∗) in stage 4 after all types have
accepted M∗ and before the type announcements are made are given by p−i(.|θi), for any type
θi ∈ Θi of agent i ∈ {1, ..., n}. These beliefs are consistent with all types of agent 1 offering
M∗ and all types of agents 2 to n accepting M∗.

Under these equilibrium beliefs, it is sequentially rational for every type of any agent
i ∈ {2, ..., n} to accept M∗ in stage 3 and to report her type truthfully in stage 4. This is so
because M∗ is individually rational and incentive compatible with respect to the prior p(.).

Hence, to complete the sufficiency part of the proof, we only need to show that there exists
a profile of sequentially rational strategies and consistent beliefs off the equilibrium path in
the game Γ such that no type of agent 1 can profitably deviate at stage 2 by offering some
mechanism M different from M∗. This will be established in four steps below.

15A degree of freedom in specifying the transfers in each state of the world arises since a neutral optimum
outcome determines only the expected payoff of each agent-type, not state-by-state transfers in the mechanism,
and there may be more than one ex-post efficient decision rule.
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Step 1. Definition of the auxiliary game Γ(M).
Fix an arbitrary mechanism M ≡ (SM

1 , ..., SM
n , xM (.), tM (.)) ∈ Z, M 6= M∗, and define

the auxiliary game Γ(M) as follows. Let Γ(M) be identical to the game Γ, except for stage 2.
Particularly, in stage 2 of Γ(M) agent 1 can choose only between two actions. She can either
exit the game and get a payoff equal to V1(θ1) if her type is θ1, or alternatively she can offer
the mechanism M . If agent 1 offers M , then stages 3 and 4 of the game Γ(M) are the same as
in the original game Γ after M is offered.

Step 2. Characterizing a sequential equilibrium of the auxiliary game Γ(M).
Since the mechanism M is finite, the auxiliary game Γ(M) possesses a sequential equi-

librium (see Kreps and Wilson (1982)).16 So let us fix an arbitrary sequential equilibrium
of Γ(M) and denote it by νM ≡

{
ρi(M |θi), σi(.|θi,M), b3

−i(.|θi,M), b4
−i(.|θi,M)

}
i=1,...,n, θi∈Θi

,
where ρ1(M |θ1) ∈ [0, 1] is the probability with which type θ1 of agent 1 offers mechanism M
at stage 2, and ρi(M |θi) ∈ [0, 1], for i = 2, ..., n, is the probability with which type θi ∈ Θi of
agent i accepts mechanism M at stage 3. Further, σi(.|θi,M) is a probability measure over SM

i

representing the strategy of agent-type θi, i ∈ {1, ..., n}, in mechanism M . Finally, b3
−i(.|θi,M)

and b4
−i(.|θi,M) are probability measures over Θ−i that represent, respectively, the beliefs of

agent-type θi ∈ Θi, i ∈ {1, ..., n} in stage 3 after agent 1 has offered mechanism M and the
beliefs of agent-type θi ∈ Θi in stage 4 after agent 1 has offered M and all agents have accepted
it.

Let Wi(θ1, ..., θn|M,νM ) denote the expected payoff of agent i conditional on M being
offered by agent 1 in stage 2 when the agents play strategies prescribed by νM and the type
profile is given by (θ1, ..., θn). We have:

Wi(θ1, ..., θn|M,νM ) = (8) ∑
(s1,...,sn)∈SM

(
ui(xM (s1, ..., sn), (θ1, ..., θn)) + tMi (s1, ..., sn)

) ∏
i=1,...,n

σi(si|θi,M)

 ∏
i=2,...,n

ρi(M |θi)

Next, let Ui(θi|M,νM ) denote the expected payoff of agent-type θi ∈ Θi, i ∈ {1, ..., n} condi-
tional on M being offered by agent 1 in stage 2 and the agents following the strategies and
holding beliefs prescribed by νM . Then,

Ui(θi|M,νM ) =
∑

θ−i∈Θ−i

Wi(θ−i, ..., θi|M,νM )b3
−i(θ−i|θi,M) (9)

Note that sequential rationality of agent 1’s mechanism-choice strategy ρ1(M |θ1) in the
auxiliary game Γ(M) implies the following:

ρ1(M |θ1) =


1 if U1(θ1|M,νM ) > V1(θ1)

any x ∈ [0, 1] if U1(θ1|M,νM ) = V1(θ1)
0 if U1(θ1|M,νM ) < V1(θ1).

(10)

Let us establish the following important property of the equilibrium νM :

U1(θ1|M,νM ) ≤ V1(θ1) for all θ1 ∈ Θ1. (11)

16If we allow mechanisms with infinite strategy space, then sequential equilibrium is not defined for such
games and so perfect Bayesian equilibrium is an appropriate solution concept. Hence we need to show that
Γ(M) possesses a perfect Bayesian equilibrium. The existence of such equilibrium follows directly from our
assumption regarding the class of feasible mechanisms Z.
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The proof of (11) is by contradiction, so let us suppose that there exists θ̂1 ∈ Θ1 such that
U1(θ̂1|M,νM ) > V1(θ̂1). From (10), we have ρ1(M |θ̂1) = 1.

Note that agent-type θi’s beliefs at stage 3 are given by b3
−i(θ−i|θi,M) = ρ1(M |θ1)p(θ−i,θi)∑

θ′1∈Θ1
ρ1(M |θ′1)p1,i(θ′1,θi)

for agent i ∈ {2, ..., n} and b3
−1(θ−1|θ1,M) = p−1(θ−1|θ1) for agent 1.

Next, let TS(νM ,M) denote the expected social surplus generated in the equilibrium νM

of Γ(M) conditional on mechanism M being offered. To express TS(νM ,M) in terms of the
agents’ expected utilities, we need some additional notation. So, let Pr[θ1, ..., θn|M,νM ] denote
the probability of the type profile (θ1, ..., θn) conditional on agent 1 offering mechanism M in
equilibrium νM . Let Pr[θi|M,νM ] denote the probability that agent i’s type is θi, for i ∈
{1, ..., n}, when mechanism M is offered in equilibrium νM . Note that Pr[θ1, ..., θn|M,νM ] =

ρ1(M |θ1)p(θ1,...,θn)∑
θ′1∈Θ1

ρ1(M |θ′1)p1(θ′1)
for all (θ1, ..., θn) ∈ Θ, Pr[θ1|M,νM ] = ρ1(M |θ1)p1(θ1)∑

θ′1∈Θ1
ρ1(M |θ′1)p1(θ′1)

for θ1 ∈ Θ1,

and Pr[θi|M,νM ] =
∑

θ′1∈Θ1
ρ1(M |θ′1)p1,i(θ

′
1,θi)∑

θ′1∈Θ1
ρ1(M |θ′1)p1(θ′1)

for θi ∈ Θi, i ∈ {2, ..., n}. Then we have:

TS(M) ≡
∑

(θ1,...,θn)∈Θ

Pr[θ1, ..., θn|M,νM ]
∑

i∈{1,..,n}

Wi(θ1, ..., θn|M,νM )

=
∑

i∈{1,..,n}

∑
θi∈Θi

Pr[θi|M,νM ]
∑

θ−i∈Θ−i

b3
−i(θ−i|θi,M) Wi(θi, θ−i|M,νM )

=
∑

i∈{1,..,n}

∑
θi∈Θi

Pr[θi|M,νM ] Ui(θi|M,νM )

>
∑

θ1∈Θ1

Pr[θ1|M,νM ] V1(θ1) +
∑

i∈{2,..,n}

∑
θi∈Θi

Pr[θi|M,νM ] Ui(θi|M,νM ) (12)

The equivalence sign reflects the definition. The first equality holds because Pr[θ1, ..., θn|M,νM ] =
b3
−i(θ−i|θi,M)Pr[θi|M,νM ] for all (θ1, ..., θn) ∈ Θ. The second equality holds by definition

(see equation (9)). The inequality in the last line holds because Pr[θ1|M,νM ] > 0 only if
U1(θ1|M,νM ) ≥ V1(θ1) (this follows from (10) and from the definition of Pr[θ1|M,νM ]) and
Pr[θ̂1|M,νM ] > 0 and U1(θ̂1|M,νM ) > V1(θ̂1) for some θ̂1 ∈ Θ1.

Next, since
∑

i∈{1,...,n} tM (s1, ..., sn) = 0 for all (s1, ..., sn) ∈ SM , we can sum the expressions
in (8) over all i ∈ {1, ..., n} to obtain:∑

i∈{1,..,n}

Wi(θ1, ..., θn|M,νM ) =

 ∑
(s1,...,sn)∈SM

 ∑
i∈{1,..,n}

ui(xM (s1, ..., sn), (θ1, ..., θn))

 ∏
i=1,...,n

σi(si|θi,M)

 ∏
i=2,...,n

ρi(M |θi)

≤
∑

i∈{1,..,n}

ui(x∗(θ1, ..., θn), (θ1, ..., θn)) (13)

The last inequality holds because: (i) the decision rule x∗(.) is socially efficient and so∑
i=1,...,n ui(xM (s1, ..., sn), (θ1, ..., θn)) ≤

∑
i=1,...,n ui(x∗(θ1, ..., θn), (θ1, ..., θn)) for all (θ1, ..., θn) ∈

Θ; (ii) σi(.|θi,M) is a probability distributions over Si and so
∑

(s1,...,sn)∈SM

∏
i∈{1,...,n} σi(si|θi,M) =

1; (iii)
∏

i=2,...,n ρi(M |θi) ≤ 1 for all (θ1, ..., θn) ∈ Θ.
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Then, combining the definition of TS(M) in the first line of (12) with (13), we obtain:

TS(M) ≤
∑

(θ1,...,θn)∈Θ

Pr[θ1, ..., θn|M,νM ]
∑

i∈{1,..,n}

ui(x∗(θ1, ..., θn), (θ1, ..., θn))

=
∑

θ1∈Θ1

Pr[θ1|M,νM ]
∑

θ−1∈Θ−1

b3
−1(θ−1|θ1,M)

∑
i∈{1,..,n}

ui(x∗(θ1, θ−1)), (θ1, θ−1))

=
∑

θ1∈Θ1

Pr[θ1|M,νM ] V1(θ1) (14)

Comparing (12) with (14), we conclude that the inequalities in (12) and (14) can hold simul-
taneously only if there exists some θi ∈ Θi for i ∈ {2, ..., n} such that Ui(θi|M,νM ) < 0. The
latter can hold only if ρi(M |θi) > 0 i.e., agent-type θi accepts mechanism M with a strictly
positive probability. However, this acceptance decision is not sequentially rational since agent-
type θi can obtain zero payoff by rejecting M with probability 1, i.e. by following a strategy
ρi(M |θi) = 0. This contradiction implies that inequality (11) must hold for all θ1 ∈ Θ1.

Step 3. The auxiliary game Γ(M) possesses a sequential equilibrium, ν̄M , in which with
probability 1 every type θ1 ∈ Θ1 of agent 1 selects the outside option with payoff V1(θ1).

Suppose that νM is a sequential equilibrium of Γ(M) (which exists by Step 1 and has
properties characterized in Step 2). If νM prescribes that ρ1(M |θ1) = 0 for all θ1 ∈ Θ1, then
define ν̄M = νM .

If there exists θ̃1 ∈ Θ1 s.t. ρ1(M |θ̃1) > 0, then to complete this step we will show that
Γ(M) possesses another sequential equilibrium,
ν̄M ≡

{
(ρ̄1(M |θ1), ρ2(M |θ2), ..., ρn(M |θn)), σi(.|θi,M), b3

−i(.|θi,M), b4
−i(.|θi,M)

}
i=1,...,n, θi∈Θi

,
that differs from νM only in agent 1’s acceptance strategy ρ̄1(M |.) which satisfies ρ̄1(M |θ1) = 0
for all θ1 ∈ Θ1.

To establish that ν̄M is a sequential equilibrium, first, note that ρ̄1(M |θ1) = 0 is sequentially
rational for any θ1 ∈ Θ1. This is so because the expected payoff Ui(θi|M, ν̄M ), which type θ1 of
agent 1 obtains after offering M in ν̄M , is the same as in νM , i.e. Ui(θi|M, ν̄M ) = Ui(θi|M,νM ),
and so property (11) of Step 2 implies that Ui(θi|M, ν̄M ) ≤ V1(θ1).

Further, since σi(.|θi,M) is the equilibrium strategy in νM , and b3
−i(.|θi,M) and b4

−i(.|θi,M)
are equilibrium beliefs in νM , σi(.|θi,M) must be sequentially rational given beliefs b3

−i(.|θi,M),
while beliefs b4

−i(.|θi,M) must be consistent given σi(.|θi,M) and b3
−i(.|θi,M).

It remains to show that beliefs b3
−i(.|θi,M), i ∈ {2, ..., n}, are consistent with equilibrium

acceptance strategies ρ̄1(M |.) satisfying ρ̄1(M |θ1) = 0.17 To see this, note that the consistency
of beliefs b3

−i(.|θi,M), i ∈ {2, ..., n}, with the participation strategy ρ1(M |.) in νM implies
that b3

−i(θ1, θ−i−1|θi,M) = ρ1(M |θ1)p(θ1,θ−i−1,θi)∑
θ′1∈Θ1

ρ1(M |θ′1)p1,i(θ′1,θi)
. This expression is well-defined because

ρ1(M |θ̂1) > 0 for some θ̂1 ∈ Θ1.
Then consider a sequence of strictly positive strategies ρ1(M |θ1, t) = ρ1(M |θ1)

tD + 1
t2D

where
D > 2 is a positive constant, and t = 1, 2, ...∞. Then we have: ρ̄1(M |θ1) = 0 = limt−→∞ ρ1(M |θ1, t)
for all θ1 ∈ Θ, and for all i 6= 1 and θi ∈ Θi we have:

b3
−i(θ1, θ−i−1|θi,M) =

ρ1(M |θ1)p(θ1, θ−i−1, θi)∑
θ′1∈Θ1

ρ1(M |θ′1)p1,i(θ′1, θi)
= lim

t−→∞

ρ1(M |θ1, t)p(θ1, θ−i−1, θi)∑
θ′1∈Θ1

ρ1(M |θ′1, t)p1,i(θ′1, θi)
(15)

17The following proof of consistency as well as that in the last paragraph of the sufficiency proof below are
redundant when Z is infinite. In this case, we apply the concept of perfect Bayesian equilibrium which does not
restrict the beliefs off equilibrium path.
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So, the beliefs b3
−i(.|θi,M) are consistent with strategies ρ̄1(M |.).

Step 4. Constructing a sequential equilibrium of Γ in which every type of agent 1 offers
mechanism M∗ with probability 1.

Recall that Steps 1-3 were established for an arbitrary M ∈ Z, M 6= M∗. Therefore, we can
choose a collection of sequential equilibria {ν̄M}M∈Z for the auxiliary games Γ(M), M ∈ Z,
M 6= M∗, with the participation strategies ρ̄1(M |θ1) = 0 for all M 6= M∗ and all θ1 ∈ Θ1. We
will use this collection to construct a sequential equilibrium E∗ of Γ.

The equilibrium E∗ is as follows. All types of agent 1 offer the mechanism M∗ = (x∗(θ), t∗(θ))
with probability 1. Also with probability 1, all agent-types accept M∗ and report their types
truthfully at stage 4. The agents’ beliefs in stage 3 after mechanism M∗ has been offered and
in stage 4 after M∗ has been accepted are given by p−i(.|θi) for all i ∈ {1, ..., n}. If agent
1 offers mechanism M ∈ Z, M 6= M∗, then agent-type θi, i ∈ {1, ..., n}, plays the strategy
σi(.|θi,M) used in ν̄M , and holds beliefs b3

−i(.|θi,M) and b4
−i(.|θi,M) in stages 3 and 4. That

is, her beliefs are the same as in equilibrium ν̄M of the auxiliary game Γ(M) after M is offered.
Let us show that E∗ is a sequential equilibrium. First, it is optimal for agent-type θ1

to offer M∗ because her expected payoff in M∗ is equal to V1(θ1), while her payoff in some
mechanism M ∈ Z, M 6= Z, is equal to Ui(θi|M, ν̄M ), and by Step 3, Ui(θi|M, ν̄M ) ≤ V1(θ1).

Further, it is sequentially rational for any agent-type θi to accept M∗ and follow a truthtelling
strategy in it, because M∗ is incentive compatible and individually rational under the beliefs
p−i(.|θi). For any M ∈ Z, the sequential rationality of the strategy σi(.|θi,M) of agent-type
θi follows from Step 3.

The consistency of beliefs b3
−i(.|M∗, θi) = p−i(.|θi) and b4

−i(.|θi,M) for all M ∈ Z is im-
mediate. The consistency of beliefs b3

−i(.|θi,M), M 6= M∗, can be established as in Step
3. That is, equation (15) holds if we set ρ1(M |θ1, t) = ρ1(M |θ1)

tD + 1
t2D

and ρ1(M |θ1, t) =
1−

∑
M∈Z,M 6=M∗ ρ1(M |θ1, t) with D = 2#Z, where #Z < ∞ is the cardinality of the space Z.

Necessity. In the standard mechanism design environment with an uninformed principal,
an ex-post efficient, individually rational Bayesian mechanism fails to exist under some pro-
files of the utility functions when either Identifiability or Crémer-McLean condition fails (see
Theorem 1 in Kosenok and Severinov (2002)). Therefore the informed principal game Γ does
not have an ex-post efficient Bayesian equilibrium in such cases either. For suppose otherwise.
Then in the standard environment, an uninformed principal can implement an efficient, indi-
vidually rational, budget-balanced mechanism by committing to always delegate the design of
the mechanism to agent 1. This would contradict Theorem 1 in Kosenok and Severinov (2002).
Q.E.D.

Proof of Theorem 2.
Let us show that equilibrium E∗ is perfect sequential. The same proof works for any other

sequential equilibrium with the same outcome as E∗, i.e. in which agent 1 offers mechanism
M∗ with probability 1 and all agents follow truthtelling strategies in M∗.18 Recall that in
the equilibrium E∗, each type θ1 of agent 1 earns V1(θ1), the expected maximal social surplus
conditional on θ1.

To prove our claim, we need to establish that off equilibrium beliefs in E∗ are credible in the
sense of Grossman and Perry (1986). Specifically, we need to show that there is no mechanism
M̃ ∈ Z, M̃ 6= M∗, for which there exists a profile of agents’ strategies σ̃ and two disjoint sets
of agent 1’s types Ks ⊆ Θ1, Ks 6= φ, and Kw ⊆ Θ1, and a system of beliefs b̃3

−i(θ−i|θi, M̃) that
have the following properties:

18Such equilibria may differ with respect to off equilibrium play and beliefs.
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(a) Let U1(θ1|M̃, σ̃) denote the payoff of a type θ1 ∈ Θ1 in the mechanism M̃ ∈ Z when
the strategy profile σ̃ is played. Then for any type θ1 ∈ Ks, we have U1(θ1|M̃, σ̃) > V1(θ1).
For any type θ′1 ∈ Kw, we have U1(θ′1|M̃, σ̃) = V1(θ′1). For any type θ′′1 6∈ (Ks ∪Kw), we have
U1(θ′′1 |M̃, σ̃) < V1(θ′′1).

(b) The beliefs b̃3
−i(θ−i|θi, M̃) of any agent-type θi ∈ Θi, i ∈ {2, ..., n}, in stage 3 after agent

1 offers mechanism M̃ , are “credible.” That is, agent-type θi ∈ Θi believes that agent-type
θ1 ∈ Ks offers M̃ with probability 1, agent-type θ1 ∈ Ks offers M̃ with some probability
h(θ1) ∈ [0, 1], and agent-type θ1 6∈ (Ks ∪ Kw) offers M̃ with probability 0. Thus, for all
θ−i−1 ∈ Θ−i−1, we have:

b̃3
−i(θ1, θ−i−1|θi, M̃) =


p(θ1,θ−i−1,θi)∑

θ′1∈Ks p1,i(θ′1,θi)+
∑

θ′1∈Kw h(θ′1)p1,i(θ′1,θi)
if θ1 ∈ Ks

p(θ1,θ−i−1,θi)h(θ1)∑
θ′1∈Ks p1,i(θ′1,θi)+

∑
θ′1∈Kw h(θ′1)p1,i(θ′1,θi)

if θ1 ∈ Kw

0 if θ1 ∈ Θ1 \ (Ks ∪Kw)

(16)

(c) Under the beliefs b̃3
−i(θ−i|θi, M̃), the strategy profile σ̃ is sequentially rational in M̃ .

To rule out the existence of such mechanism M̃ , strategy profile σ̃, system of credible beliefs
b̃3
−i(θ−i|θi, M̃), and subsets Ks 6= φ and Kw of agent 1’s types that satisfy these properties, we

argue by contradiction. So suppose that such exist.
Note that credible beliefs {b̃3

−i(θ−i|θi, M̃)}θi∈Θi,2∈{1,...,n} assign positive probabilities only
to those types of agent 1 that belong to Ks and Kw. Recall that for any θ1 in the non-empty
set Ks, U1(θ1|M̃, σ̃) > V1(θ1), and for any θ′1 ∈ Kw, U1(θ′1|M̃, σ̃) = V1(θ′1).

But then we can use the same argument as in the proof of Theorem 1, and in particular,
the sequences of inequalities (12) and (14), to show that there must exist some agent-type
θi ∈ Θi, i ∈ {2, ..., n}, who earns a strictly negative expected payoff in the mechanism M̃ .
However, then the strategy profile σ̃ cannot be sequentially rational, because θi can obtain her
reservation payoff of zero by dropping out at stage 3 after agent 1 offers M̃ . Q.E.D.

Proof of Theorem 3. By Theorem 6 of Myerson (1983) a neutral optimum exists. By
definition, a neutral optimum mechanism must be admissible, i.e. incentive compatible, indi-
vidually rational and ex-post budget-balanced. Our mechanism M∗ = (x∗(θ), t∗(θ)) satisfies
these three properties. So to prove the Theorem, we need to rule out any mechanism in which
the expected payoff of some type θ1 of agent 1 differs from V1(θ1). Precisely, since there are no
admissible mechanisms in which every type θ1 ∈ Θ1 gets an expected payoff exceeding V1(θ1)
with at least one type θ̃1 getting strictly more than V1(θ̃1), we only need to show that any
mechanism in which the expected payoff of some type θ1 of agent 1 is strictly less than V1(θ1)
is not a neutral optimum.

So, take some other admissible mechanism M ∈ Z, let {U1(θ1|M)}θ1∈Θ1 denote the vector
of agent 1’s expected payoffs in M , and suppose that U1(θ′1|M) < V1(θ′1) for some θ′1 ∈ Θ1.
Next, define blocking concept B̂(θ′1) as follows:

B̂(θ′1) ≡

z(.) ∈ Rm1
+ |

∑
θ1∈Θ1

z(θ1)p1(θ1) ≤
∑

i;θ∈Θ

ui(x∗(θ), θ)p(θ); z(θ′1) < V1(θ′1)


Let us show that B̂(θ′1) satisfies Axioms 1-4. It satisfies the Domination Axiom by definition.
Further, it satisfies the Openness Axiom, because B̂(θ′1) is open in the set of feasible expected
payoff vectors of agent 1 {y(.) ∈ Rm1

+ |0 ≤
∑

θ1∈Θ1
y(θ1)p1(θ1) ≤

∑
i;θ∈Θ ui(x∗(θ), θ)p(θ)}.

To see that the Extension Axiom holds, suppose that we expand the set X by adding more
elements to it. This modification may change the set of ex-post efficient decision rules. As
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a result, the expected social surplus
∑

i=1,...,n;θ∈Θ ui(x∗(θ), θ)p(θ) can increase, but it cannot
decrease. Similarly, V1(θ′1), the expected social surplus conditional on type θ′1 ∈ Θ1 of agent
1, cannot decrease after we expand X. Therefore, by definition of B̂(θ′1), the outcomes which
were blocked prior to an expansion of X, remain blocked after such expansion.

Finally, let us show that B̂(θ′1) satisfies Axiom 4, i.e. it does not block a strong solution.
Suppose that mechanism M s is a strong solution, and let Ui(θi|M s) (Ui(θi|M s, θ1)) denote the
expected payoff of agent-type θi (θi’s expected payoff conditional on agent 1’s type θ1) in M s.

Then it must be the case that U1(θ1|M s) ≤ V1(θ1) for all θ1 ∈ Θ1. To see this, suppose
otherwise, i.e. U1(θ̄1|M s) > V1(θ̄1) for some θ̄1 ∈ Θ1. Then, since M s is budget-balanced and
V1(θ̄1) is equal to the expected maximal social surplus conditional on agent 1’s type θ̄1, there
must exist some agent-type θ′i ∈ Θi, with i ∈ {2, ..., n}, whose expected payoff in M s when
agent 1’s type is θ̄1 (i.e., Ui(θ′i|M s, θ̄1)) is strictly negative. But this contradicts condition
7 in Axiom 4 which requires that the expected payoff of any type θi of agent i ∈ {2, ..., n},
conditional on any type of agent 1, should be above the reservation payoff of zero.

On the other hand, we cannot have U1(θ′1|M s) < V1(θ′1) for some θ′1 ∈ Θ1. For otherwise,
M s would be dominated by the mechanism M∗ as we would have U1(θ1|M s) ≤ U1(θ1|M∗) for
all θ1 ∈ Θ1, with strict inequality for θ′1. So, we must have U1(θ1|M s) = V1(θ1) for all θ1 ∈ Θ1,
and therefore M s is not blocked by B̂(θ′1).

We have shown that B̂(θ′1) satisfies Axioms 1-4, i.e. it is an admissible blocking concept.
So, a neutral optimum outcome cannot belong to B̂(θ′1). Recall that θ′1 ∈ Θ1 was chosen
arbitrarily. Hence, the expected payoff of each type θ1 ∈ Θ1 of agent 1 in a neutral optimum
mechanism must be equal to V1(θ1). This implies that a neutral optimum mechanism must be
ex-post efficient, and the expected payoff of every agent-type θi ∈ Θi, i ∈ {2, ..., n}, must be
equal to zero. Otherwise, by our standard argument relying on the sequences of inequalities
(12) and (14), the individual rationality of some other agent-type will fail. Thus, the set of
ex-post efficient admissible mechanisms in which agent-type θ1 obtains payoff V1(θ1) includes
M∗ and other ex-post efficient mechanisms with the same expected payoff of every agent-type
as in M∗. Q.E.D.
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