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Abstract

We study implementation in environments where agents have limited ability to imitate others. Agents
are randomly and privately endowed with type-dependent sets of messages. So sending a message be-
comes a partial proof regarding type. For environments where agents can send any combination of available
messages, we develop an Extended Revelation Principle and characterize the incentive constraints which
implementable allocations must satisfy. When not all message combinations are feasible, static mechanisms
no longer suffice. If a ‘punishment’ allocation exists for each agent, then implementable allocations can be
characterized as equilibria of a “Revelation Game,” in which agents first select from the menus of allocation
rules, then the mediator requests each agent to send some verifying messages. When a punishment alloca-
tion fails to exist for some agent, dynamic games in which agents gradually reveal their evidence implement
a larger set of outcomes. The latter result provides a foundation for a theory of debate.
© 2008 Elsevier Inc. All rights reserved.

JEL classification: C7; D82

1. Introduction

The literature on implementation in incomplete information environments studies how a prin-
cipal can effectively elicit private information regarding preferences from agents. This paper
considers a different dimension on which agents may have private information, and along which
the principal may be able to screen, namely the ability/inability of different agents to substantiate
their own and other agent’s claims regarding the state of the world.
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The premise that agents can costlessly and effortlessly manipulate information is prevalent
in economics. Yet in practice, the ability of agents to do so is often limited. There are several
reasons for this. First, for psychological or ethical reasons it may be costly for some individuals
to misrepresent the truth. Lying may cause stress or discomfort (“blushing,” “feeling wrong”),
producing a disutility. The physical symptoms associated with emotional discomfort that people
experience when lying have been extensively studied by behavioral psychologists (see, e.g., Ek-
man, 1973). Experimental evidence confirms that a nonnegligible part of the population chooses
not to lie regarding private information, even when this would increase their monetary payoffs.1

As for economic consequences of such behavior, Erard and Feinstein (1994) argue that “some
taxpayers appear to be inherently honest, willing to bear their full tax burden even when faced
with financial incentives to underreport their income. ...(The presence of) such inherently honest
taxpayers is supported by econometric evidence and survey findings...” Deneckere and De Palma
(1995) and Alger and Ma (2003) emphasize that agents with stronger ethical views are less prone
to colluding and misrepresenting their condition.2

Second, agents may be asked to support their claims with some form of evidence. Failure of
an individual to produce evidence known to be available in a certain state of the world then pro-
vides proof that this state of the world has not occurred. Important applications include analysis
of provability (Lipman and Seppi, 1995) and court proceedings (Bull and Watson, 2004a and
Squintani, 2004).3

Finally, misrepresenting the truth may require costly physical actions. For example, a share-
cropper who misrepresents the crop may have to hide part of it or borrow some from a third
party.

Building on this motivation, this paper studies mechanism design in environments where
participants have limited ability to misrepresent their information. In our model, each agent is
randomly and privately endowed with a preference parameter affecting everyone’s utility, and
with a set of “verifying messages.” Because particular verifying messages are available to an
agent only in some states of the world, they possess direct informational content: they verify that
the state of the world must be such that they are available to that agent.

We develop a general method for implementation and characterize the set of implementable
social choice rules in such environments. In particular, we derive the incentive constraints that
need to be satisfied by implementable allocations. This set of incentive constraints is smaller
than in the standard environment because of the availability of verifying messages. Describing
the incentive constraints precisely constitutes one of the central contributions of our paper, as it
transforms the task of characterizing the set of implementable social choice rules from that of
constructing appropriate mechanisms or disproving their existence to the much simpler task of
deriving the set of solutions to a linear program.

1 For example, Gneezy (2002) reports experiments with deception games in which responders were known to largely
follow the sender’s recommendation. Yet the proportion of informed senders who chose not to mislead opponents even
though misleading was in the senders’ best interests varied from 48% to 83% across experiments. Survey evidence paints
a similar picture, with a core group of people having no qualms at all about inflating insurance claims, but an even greater
fraction considering it unacceptable to do so (Tennyson, 1997).

2 Other papers arguing that ethical considerations may lead some agent types to behave honestly are Alger and Re-
nault (2006) and Kartik et al. (2007). Severinov and Deneckere (2006) argue that naive behavior—which has the same
behavioral consequences as honesty—may be due to bounded rationality. Chen (2000) maintains that individuals have a
tendency to keep promises, and shows that this may cause optimal contracts to be incomplete.

3 Che and Gale (2000) study trading mechanisms with budget constrained buyers. Such buyers can credibly disclose
information about their budget by posting a bond.
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We first study environments in which there are no restrictions on the number or the com-
binations of messages that agents can send from their set of verifying messages. We derive an
“Extended Revelation Principle” which shows that all implementable social choice functions
can be implemented via a mechanism in which each agent sends all her verifying messages, and
makes a choice from a menu of allocations that is contingent on the set of verifying messages
she sent. Since choosing from a menu is equivalent to making a cheap-talk claim regarding her
preference parameter, in equilibrium each agent truthfully reveals her preference parameter and
provides all evidence she has available.

Using the Extended Revelation Principle we characterize the set of incentive constraints that
have to be imposed upon implementable allocations (Corollary 1). This set of incentive con-
straints reflects the intuition that partial verifiability alleviates the incentive problem and elicits
agents’ information more easily. Nevertheless, we demonstrate that the set of implementable
allocations is not always monotone in the degree of verifiability.

We then study environments in which agents are unable to send all possible subsets of their
set of verifying messages. An interesting class of such environments occurs when the mecha-
nism specifies exogenous limits on the number of messages an agent is allowed to send, as in
Glazer and Rubinstein (2001, 2004). Implementation in such environments is complicated by the
fact that generally agents are no longer able to fully demonstrate their communication abilities,
necessitating the use of dynamic mechanisms and randomization in the set of messages sent.

We provide a necessary and sufficient condition—the existence of an agent-specific allocation
which gives the lowest utility to all types of that agent—under which the set of implementable
outcomes can be characterized in terms of truthful and obedient equilibria of a particular ‘reve-
lation game.’ In this game, agents first send cheap talk messages (or choose from a menu). As a
function of these reports, the principal randomly requests agents to send a combination of verify-
ing messages. This result extends Theorem 6 of Bull and Watson (2004b) which considers similar
restrictions on feasible sets of agents’ verifying messages (evidence) but limits consideration to
games and mechanisms in which each agent can send messages at most once along any path of
the game. In contrast, we allow agents to disclose evidence more than once along the path of the
game. This highlights the important role of player specific punishments (which are unnecessary
in the setting of Bull and Watson, 2004b).

Using our characterization result for this environment, we then identify the set of incentive
constraints that any implementable social choice function must satisfy.

Finally, we analyze the case in which agent-specific worst allocations fail to exist. In this case,
dynamic mechanisms in which agents take turns to send their verifying messages, and some
agents send messages more than once, implement a larger set of social choice functions than
mechanisms in which each agent sends verifying messages only once. Thus, our paper provides
a foundation for a theory of debates between asymmetrically informed parties.

The prior work most closely related to the present paper is Green and Laffont (1986) and Lip-
man and Seppi (1995). Green and Laffont (1986) study a model in which agents are limited in
the direct claims on type they can make, and show that it may be optimal to induce agents to lie
when they are allowed to submit only one such claim. Our paper demonstrates that, when the lat-
ter restriction is imposed, it is generally impossible to translate an arbitrary situation with partial
verifiability into a direct revelation model with a single type announcement (see Proposition 1).
Consequently, there is a need to develop a valid method of implementation in environments with
partial verifiability, providing the impetus for the rest of our analysis.

Lipman and Seppi (1995) analyze a model in which a group of symmetrically informed agents
with conflicting interests sequentially submit claims, and derive conditions under which the prin-
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cipal is able to elicit the truth. In contrast, our agents are asymmetrically informed, and we study
conditions under which sequential revelation of evidence is (or is not) necessary.

Our paper is also closely related to recent work by Bull and Watson (2004b) and Forges
and Koessler (2005). These papers differ from ours in both setting and motivation, and their
analysis is complementary to ours, but there nevertheless is significant overlap in results. In the
Conclusions we discuss the relation between these papers and ours in more detail.

In our model verifying evidence is either available to the agent or not, and she cannot gener-
ate it endogenously. In contrast, the literature on “costly state falsification,” including Lacker
and Weinberg (1989), Maggi and Rodriguez-Clare (1995), Crocker and Morgan (1998), and
Sanchirico and Triantis (2004), studies the design of mechanisms in situations where the agent
incurs a cost increasing in the magnitude of misrepresentation of the true state of the world. Kar-
tik (2004) explores a signaling model in which untruthful signals are costly in a similar way. He
shows that the outcome converges to the most informative cheap talk equilibrium as the cost of
misrepresentation converges to zero. In a companion paper (Deneckere and Severinov, 2003), we
analyze a screening model in which the agent can generate multiple pieces of evidence or has to
pass several tests, incurring a cost which increases in the magnitude of falsification on each test
(piece of evidence).

The rest of the paper is organized as follows. In Section 2 we present the model where agents
can send all combinations of feasible messages. Section 3 develops our “Extended Revelation
Principle,” and studies the extent to which the number of messages sent in the mechanism can
be reduced without limiting the scope of implementation. Section 4 analyzes situations in which
agents are unable to send some combinations of verifying messages. Section 5 concludes. All
proofs are relegated to Appendix A.

2. The model

We consider an asymmetric information environment with one principal and L � 1 agents.
The set of public decisions (allocations) in this environment is X, with typical element x. Each
agent i ∈ {1, . . . ,L} privately observes the outcome of a random variable θi ∈ Θi that affects
the utilities of all agents. Letting θ = (θ1, . . . , θL) and Θ ≡ ∏L

i=1 Θi , the utility of agent i when
allocation x is implemented is then given by ui(x, θ).

Let C denote the space of “verifying messages,” i.e. the set of messages that can be submitted
by some type of some agent in some states of the world, but that are not available to every
type in every state of the world. Every element of C is a minimal message unit, denoted by m.
All restrictions on agents’ communication abilities are embodied in their feasible message sets
Mi ⊂ C . An agent with feasible message set Mi can send a collection of verifying messages
{m1, . . . ,mn} if and only if mj ∈ Mi for each j = 1, . . . , n.4

Each agent’s set of verifying messages is her private information. So, a full description of
agent i’s type includes both her preference parameter θi and her feasible message set Mi . Ac-
cordingly, we define an agent’s type as ti = (θi, Mi ). Our approach that the message set Mi

forms an integral part of agent i’s type description is a significant departure from the existing
literature which maintains that an agent’s preference parameter completely describes her type.
We denote the set of all possible types of agent i by Ti ⊂ Θi × 2#C (where 2#C is the power set
of C). Let t = (t1, . . . , tL) denote the profile (vector) of agents’ types (we will also refer to t as

4 In Section 4 we consider restrictions on the collections of verifying messages that agents can send.
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the state of the world), and let T ⊂ T1 ×· · ·×TL be the type space. Note that the inclusion could
be strict because some type profiles may be infeasible.

The prior probability F(·) over T is common knowledge among all parties, with F(t) >

0 for all t ∈ T . The marginal probability distribution over i’s types is denoted by Fi(ti). Our
environment is thus completely described by an (L + 4)-tuple {X, C, T ,F (·), u1(·), . . . , uL(·)}.

We do not assume that there is a deterministic relation between θi and Mi . In particular,
letting Ii(Mi ) = {θi | (θi, Mi ) ∈ Ti} and Ki(θi) = {Mi | (θi, Mi ) ∈ Ti}, it may or may not
be that Ii(Mi ) or Ki(θi) are singletons. We use the symbol Ni to denote the collection of all
possible sets of verifying messages of agent i, i.e. Ni = {Mi | ∃θi ∈ Θi : (θi, Mi ) ∈ Ti}. Note
that θi ∈ Ii(Mi ) if and only if Fi(θi, Mi ) > 0.

Several comments on this general model are in order. First, define agent i’s message to be
“cheap talk” if it is available to agent i in every state of the world t ∈ T . Such cheap talk messages
do not contain credible information regarding the state of the world, and are explicitly excluded
from the set C . In contrast, any message mi ∈ Mi sent by agent i has direct informational content
which can be exploited by the mechanism designer: it proves that agent i’s type cannot be such
that mi is unavailable to her, and so partially verifies i’s type.

In practice, verifying messages exist for a host of reasons. Elements of the set C could be
documents (contracts, receipts, or other legal records, etc.), physical items (such as evidence
collected by investigators), or human acts (such as passing a test or demonstrating a skill). Alter-
natively, direct written or verbal communication can have verifiability if some agents are unable
to lie, or can shade the truth only partially when describing the state of the world.

Our model makes an explicit distinction between any literal meaning a verifying message may
have, on the one hand, and its real informational content, on the other hand. Although both agents
and the principal could attach a literal meaning to some verifying messages (as is the case with
documents or verbal testimony), sending those messages does not necessarily prove their literal
meaning to be true. Rather, the informational content of a verifying message derives solely from
the fact that it is available to the sender only in some states of the world.

We assume that the decision whether or not to send a verifying message from Mi is under
the sole control of agent i. Consequently, the principal must provide agent i with incentives to
produce these messages. In designing these incentives, the principal must respect the constraint
that type ti can only provide verifying messages belonging to Mi . However, we do not impose
further restrictions on the type of mechanisms that the principal can design. In particular, in line
with the rest of the mechanism design literature, we assume that the principal can offer menus of
different allocations from which agents can choose. The choice of an allocation from a menu is an
action that does not interfere with an agent’s ability to provide evidence in the form of verifying
messages. As far as implementation is concerned, choosing from a menu plays the same role as
cheap talk: both ensure that self-selection can occur. Thus, without loss of generality, cheap talk
statements about type are available to all agents. Throughout the paper, we distinguish between
such cheap talk statements regarding type and any evidence an agent can submit.5

Menus allow the mechanism designer to screen types who have different preferences parame-
ters, θi , but identical sets of verifying messages. Such types can provide the same proof and hence
can imitate each other freely. So they can be screened further only by relying on self-selection

5 In applying our model to cases where some agents have ethical concerns about lying, we distinguish between literal
claims regarding the state of the world (which are ethically significant, and thus contained in Mi ), and implicit cheap
talk claims resulting from their choices from a menu of allocations. Honest agents are free to choose any element from
such a menu of allocations, yet are restricted in the literal claims they can make.
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via menus. Also, in the model of Section 4, menus allow the mechanism designer to cross-check
the agents’ reports, and determine the collections of verifiable messages agents should send.

Green and Laffont (1986) analyze a principal-agent model in which the agent is restricted
in her ability to make direct claims about her preference type. However, these authors do not
explain how an underlying environment with verifying claims could give rise to such a model.
Furthermore, their analysis is limited to static mechanisms in which the agent can send only one
feasible claim. In contrast, we permit arbitrary dynamic mechanisms, and do not restrict agents
in the number of verifying claims they can submit.

Our first proposition establishes that direct revelation mechanisms, which Green and Laffont
(1986) focus on, are inadequate for implementation when agents can only send a single verify-
ing claim. Specifically, there is then no general equivalence between models in which agent i’s
feasible message set Mi is drawn from some arbitrary message space C and models of direct
communication in which i’s feasible message set is drawn from Θi .

Proposition 1. Suppose that each agent is restricted to sending a single message in the mecha-
nism. Then there exists an environment {X, C, T ,F (·), u1(·), . . . , uL(·)} with feasible message
sets Mi ⊆ C for which there is no equivalent environment {X,

⋃L
i=1 Θi,T

′,F (·), u1(·), . . . ,
uL(·)}, with a bijection b mapping the type space T to T ′ so that to each agent type (θi, Mi ) ∈ Ti

there corresponds a type t ′i = (θi,Mi) ∈ T ′ with Mi ⊂ Θi , and so that the sets of implementable
social choice functions f (·) : Θ 	→ X in the two environments coincide.

In Section 4, we also show that when agents are restricted to making a single or a few verifying
claims, static mechanisms generally do not suffice for implementation.

3. Analysis of the basic model

A social choice function (s.c.f.) is a mapping from the set of agent types into the outcome
space X, i.e. f (·) : T 	→ X. We assume that agents are expected utility maximizers.6 Our goal
in this section is to provide a method for characterizing the set of social choice functions im-
plementable in a Bayesian equilibrium of some (possibly dynamic) mechanism. As a first step
towards this goal, let us design a mechanism G (or, more precisely, a class of mechanisms with
the same game form)7 which can be used to implement any implementable social choice func-
tion. For ease of exposition, we present G as a two-stage mechanism, but argue later that G can
also be implemented as a static mechanism.

In the first stage of mechanism G the agents are requested to simultaneously report all their
feasible verifying messages to the principal. In the second stage, each agent is offered a menu of
allocations to choose from, or, equivalently, is asked to send a cheap-talk message announcing
her preference parameter. The purpose of the second stage is to use the self-selection method to
assign different allocations to agent-types with the same set of verifying messages, but different
preference parameters. Thus, the number of elements in the menu offered to agent i who sent a
set of verifying messages Mi in the first stage is equal to #Ii(Mi ). The outcome assigned by the

6 Random allocations can be accommodated by letting X be a space of probability distributions over a space of ‘ele-
mentary’ outcomes Y , and ui(x, θ) the expected utility of lottery x.

7 A mechanism is a collection of strategy spaces for the agents, {Si }Li=1, and an outcome function g(·) : ∏L
i=1 Si 	→ X.

Mechanisms from the class G have the same strategy spaces, but differ in outcome function.
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mechanism is determined by the verifying messages sent by the agents in stage 1 and the menu
choices/cheap-talk reports in stage 2.

The submission of verifying messages in the first stage can be seen as a ‘password’ necessary
to access a particular menu of allocations. For this reason we will refer to mechanisms of class G

as ‘password’ mechanisms. It is important to note that the types of agent i who cannot send the
set of verifying messages Mi will not be able to gain access to the menu contingent on Mi and
thus will not be able to obtain the corresponding outcomes.

A strategy in which agent i sends all her verifying messages and chooses the element from
the menu labeled by her true preference parameter θi is called truthfully revealing. We then have:

Theorem 1 (Extended Revelation Principle). Any social choice function implementable in
Bayesian equilibrium of some mechanism can be implemented in Bayesian equilibrium of mech-
anism G, with all agents using truthfully revealing strategies. Furthermore, there exist social
choice functions that can be implemented only via a mechanism requiring agents to send all
verifying messages.

Theorem 1 establishes in what sense the Revelation Principle can be extended to the costly
communication case. One can focus on mechanisms in which every agent truthfully reveals her
type by sending all her verifying messages and then making the corresponding menu choice.
Moreover, in some cases it may be necessary to require that agents send all their verifying mes-
sages, in order to fully exploit their limited abilities to manipulate information.

The intuition behind Theorem 1 is easy to understand. When two types of an agent have
different sets of verifying messages, one of them (say, type A) cannot send all the verifying
messages that are feasible for the other (say, type B). If the mechanism exploits this property,
then an implementable social choice function need not satisfy the standard incentive constraint
that type A of this agent gets a higher payoff from the allocation designed for her than from the
allocation designed for type B of this agent. The larger is the set of incentive constraints that are
eliminated in this way, the larger is the set of implementable social choice functions. Because
the mechanisms of class G require agents to send all their verifying messages, they eliminate
the maximal possible number of incentive constraints. Therefore mechanism G implements any
social choice function implementable via any other mechanism.8

Mechanism G can be implemented statically, by having agents simultaneously report both
their verifying messages and the element of the menu they would select in stage two. Alterna-
tively, agents could first make choices from the menus, and then present all their verifying claims
establishing access to the respective menu. In practice, each of these timings seems to be used.

8 Applying our approach to the motivating example studied by Green and Laffont (1986), we can implement a larger
set of social choice functions than are implementable using the approach used by these authors. Indeed, consider an en-
vironment with a single agent, a decision set X = {x1, x2, x3}, and three types t1 = (θ1, {m1,m2}), t2 = (θ2, {m2,m3}),
t3 = (θ3, {m3}). The payoff structure is as follows:

u(x1, θi ) < u(x3, θi ) < u(x2, θi ) ∀i ∈ {1,2,3}.
Consider a social choice function f (t1) = x1, f (t2) = x2, f (t3) = x3. Then f (·) is not implementable via any mech-
anism in which the agent sends only one verifying message m ∈ {m1,m2,m3}. To see this, suppose otherwise. Then
all three agent types must send different verifying messages in equilibrium. Since type t3 can only send message m3,
it follows that type t2 must send message m2. However, type t1 would then imitate the message sent by type m2. On
the other hand, f (·) is implementable via the mechanism with the following outcome function G̃(·): G̃(m2,m3) = x2,
G̃(m3) = x3, and G̃(S) = x1, where S is any other report.
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For example, sellers facing customers who may be “honest” or “naive” often engage in customer
interviews eliciting information regarding their willingness to pay prior to presenting them with
various options (Severinov and Deneckere, 2006). In contrast, the IRS requires taxpayers to in-
clude some hard evidence along with their income reports, and in court hearings the defendant
first enters a plea (a cheap talk claim) and then presents evidence.

In mechanism G, a type (θi, Mi ) of agent i can obtain the allocation designed for type
(θ ′

i , M′
i ) if and only if the former can fully mimic the latter, i.e. if M′

i ⊂ Mi . This precisely
delineates which incentive constraints must be imposed on the social choice function:

Corollary 1. A social choice function f : T → X is implementable in Bayesian equilibrium if
and only if there exists a decision rule f̃ : ∏L

i=1 Ti \ T → X such that the following incentive
constraints hold for all i, all ti = (θi, Mi ) ∈ Ti , and all t ′i = (θ ′

i , M′
i ) ∈ Ti s.t. M′

i ⊆ Mi :

∑
t−i∈T−i

ui

(
f (ti , t−i ), θ

)
Fi(t−i |ti )

�
∑

t−i :(t ′i ,t−i )∈T

ui

(
f

(
t ′i , t−i

)
, θ

)
Fi(t−i |ti ) +

∑
t−i :(t ′i ,t−i )/∈T

ui

(
f̃

(
t ′i , t−i

)
, θ

)
Fi(t−i |ti ). (1)

Inequality (1) requires some explanation. In the standard case where agents have no verifying
claims, we have Mi = φ for all ti ∈ Ti , and so inequality (1) must hold for all t ′i ∈ Ti . The pres-
ence of verifying messages therefore expands the set of implementable social choice functions.
The role of the rule f̃ is to assign an allocation when the joint type report is infeasible, i.e. t /∈ T .
No such f̃ is needed if either T = ∏L

i=1 Ti or L = 1. In the single-agent case, we can drop the
agent subscript, and condition (1) takes on a particularly simple form:

u
(
f (θ, M), θ

)
� u

(
f (θ ′, M′), θ

)
, for all (θ ′, M′) ∈ T s.t. M′ ⊂ M.

Condition (1) also simplifies if there exists a worst outcome, i.e. an allocation x s.t. ui(x, θ) �
ui(x, θ), for all x ∈ X, θ ∈ Θ and i = 1, . . . ,L.9 Then we may set f̃ (t) ≡ x, as this makes it
easier to satisfy the corresponding incentive constraints.

Requiring agents to submit verifying claims can have a dramatic impact on the set of imple-
mentable social choice functions, as the following condition demonstrates:

Non-Nested Range Condition (NNRC). For any agent i and any (θi, Mi , θ−i , M−i ) ∈ T , we
have (θ ′

i , M′
i , θ−i , M−i ) /∈ T whenever θ ′

i �= θi and M′
i ⊆ Mi .10

Under NNRC, an agent’s untruthful cheap-talk announcement of her preference parameter
produces an inconsistency with the verifying messages submitted by other agents and their re-
ported preference parameters, when those agents report truthfully and submit all their verifying
messages. Thus, when there exists a worst outcome,11 we have:

9 Such an allocation exists in environments with transferable utility, since the mechanism design can serve as a collector
of fines. If we were also concerned with budget-balanced implementation, then the existence of a worst outcome would
involve some loss of generality, even in environments with transferable utility.
10 The analogue of NNRC in Lipman and Seppi (1995) is their two-way disprovability condition.
11 In fact, we only need an allocation that is worse than the equilibrium allocation for all types of all agents.
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Lemma 1. Suppose that NNRC holds and there exists a worst outcome x. Then any social choice
rule f (θ1, . . . , θL) : Θ 	→ X is implementable in Bayesian Equilibrium.12

NNRC implies that any agent’s preference parameter can be perfectly inferred from know-
ledge of the type profile of other agents. So, NNRC is similar to the concept of non-exclusive
information introduced by Postlewaite and Schmeidler (1986).

NNRC can be weakened by requiring that an agent’s deviation be detected with positive
probability.

WNNRC: Consider any (θi, Mi ) ∈ Ti and θ ′
i �= θi . Then for all M′

i ⊆ Mi there exists
(θ−i , M−i ) such that (θi, Mi , θ−i , M−i ) ∈ T but (θ ′

i , M′
i , θ−i , M−i ) /∈ T .

Essentially, WNNRC says that when θi shifts to θ ′
i , then some combination of other agents’

types becomes infeasible. Lemma 1 still holds provided the principal can impose sufficiently
large punishments (for example, when monetary transfers are available and agents do not have
limited liability). Large punishments may be required because an agent’s deviation is only de-
tected with positive probability.

NNRC and WNNRC provide strong restrictions on agents’ communication abilities under
which all social choice functions are implementable. Meanwhile, in the traditional environment
where all messages are feasible and the types are distributed independently, there are no verifying
claims, and the set of implementable social choice functions is minimal. However, the set of
implementable social choice functions is not necessarily monotonic in an agent’s ability to prove
claims, as the following example demonstrates:

Example 1. There is a single agent, with three possible types (θ1, M1), (θ2, M2) and (θ3, M3),
where M1 = {m1,m2}, M2 = M3 = {m1,m2,m3}. If we reduce M2 to {m1,m2}, then type
(θ2, M2) is no longer able to mimic type (θ3, M3). However, type (θ1, M1) can now mimic
type (θ2, M2), whereas before she was unable to do so. Hence the net effect on the set of imple-
mentable social choice functions is ambiguous.

Our next lemma provides a general condition under which reducing some type’s ability to
provide verifying claims makes implementation easier.

Lemma 2. Let ti = (θi, Mi ) ∈ Ti and mi ∈ Mi . Then reducing the set of verifying messages13

of agent-type ti to Mi � {mi} does not reduce the set of implementable social choice functions
if and only if there does not exist a type t ′i = (θ ′

i , M′
i ) such that Mi � M′

i = mi .

3.1. Minimizing communication

Thus far, the focus of our model has been on communication costs implicitly associated with
agents’ inability to send certain verifying messages, not with the physical cost of sending and
receiving those messages. In practice, however, producing proofs or evidence and examining
them may be costly to agents and the mechanism designer. For this reason, in court proceedings

12 Note that Lemma 1 focuses on social choice functions that depend only on agents’ preference parameters, not on their
communication abilities. If one wishes to implement social choice functions that also depend on communication abilities,
then the following stronger version of NNRC is sufficient: Consider any agent i and any (θi , Mi , θ−i , M−i ) ∈ T . Then
(θ ′

i
, M′

i
, θ−i , M−i ) /∈ T whenever (θi , Mi ) �= (θ ′

i
, M′

i
).

13 Note that we make this change without modifying the probability distribution of type profiles F(·).
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lawyers may wish to present the minimal amount of evidence necessary to establish their client’s
claims. Similarly, judges may wish to curtail the amount of evidence presented.

In this subsection, we determine the smallest collection of messages any agent type must send
in order for the set of implementable social choice functions not to be curtailed. Intuitively, the
solution involves agents sending only messages that have maximal informational content. In our
context, if agent i sends message m ∈ Mi , she proves that her feasible message set does not
belong to Zi(m) = {M′

i∈ N i : m /∈ M′
i}. Thus, by sending a collection of messages M ⊂ Mi

agent i establishes that her feasible message set does not belong to Zi(M) = ⋃
m∈M Zi(m) =

{M′
i ∈ Ni | M\M′

i �= φ}.
Let us now eliminate redundancies in informational content amongst messages in Mi by

selecting the smallest subset M ⊂ Mi such that Zi(M) = Zi(Mi ) (if there are several such
smallest subsets, fix one arbitrarily). Denote this set by Ai (Mi ).

The “unravelling” result of Grossman (1981) and Milgrom (1981) provides an illustration of
our algorithm. Consider a single agent, who has n possible preference types θ1, . . . , θn. The
feasible message set of type θi is Mi = {m1, . . . ,mi}. In this example, we have Z(Mi ) =
{M1, . . . , Mi−1}. However, since Z(mi) = Z(Mi ), type θi only needs to send the single mes-
sage mi . This message has maximal informational content in the sense defined above.

Next, construct a “minimal communication” mechanism H . In this mechanism, the agents are
assigned the same allocations as in mechanism G of Theorem 1. However, agent i with a set of
verifying messages Mi is requested to send only the collection of messages Ai (Mi ), instead of
all Mi . Theorem 2 states the implication for implementation in Bayesian equilibrium:

Theorem 2. A social choice function is implementable if and only if it is implementable via mech-
anism H . Furthermore, some such social choice functions are not implementable via mechanisms
in which some agent i of type (θi, Mi ) sends less than #Ai (Mi ) messages.

In mechanism H , agent-type ti sends exactly one message that is not available to any type t ′i
that cannot send all messages available to ti . So, by Corollary 1 mechanism H minimizes the
amount of communication without sacrificing the scope of implementability.14 Theorem 2 has
the following corollary.

Corollary 2. A necessary and sufficient condition for agent type (θi, Mi ) to send a single ‘iden-
tifier’ message mi(Mi ) in mechanism H is as follows: mi(Mi ) /∈ M′

i , for all M′
i ∈ Ni such

that Mi \ M′
i �= ∅.15

3.2. Applications

This subsection exhibits the application of our approach to two well-known economic prob-
lems. First, consider the following version of Myerson–Satterthwaite bilateral bargaining:

14 Bull and Watson (2004a) characterize minimal document collections in court trials between two contracting parties
who have complete information, when courts can enforce budget-balanced transfers. They show that if agent 1 gets a
higher transfer in state θ than in state θ ′ , then either agent 1 is able to present a document in state θ that is not available
to her in state θ ′ , or agent 2 is able to present a document in state θ ′ that is not available to her in state θ .
15 We do not require that an ‘identifier’ message mi(Mi ) could not be imitated by an agent with different communi-
cation abilities M′

i
�= Mi . Rather, as in the unraveling example above, it must be the case that if mi(Mi ) ∈ M′

i
, then

Mi ⊂ M′ .

i
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Example 2 (Bilateral Bargaining with Limited Ability to Misrepresent).
A buyer with valuation b and a seller with cost c bargain over the sale of a single good. The

traders’ types are independently distributed, and can take on one of n possible values, respec-
tively denoted by b1 < b2 < · · · < bn and c1 < c2 < · · · < cn, where bi−1 � ci−1 < bi � ci for
all i. If trade takes place at price p, then the buyer’s and seller’s surplus are bi − p and p − cj ,
respectively. Traders can falsify evidence regarding their types by at most one grid point. Thus
Mb(bi) = {bi−1, bi, bi+1} for i = 2, . . . , n − 1, Mb(b1) = {b1, b2}, and Mb(bn) = {bn−1, bn}.
Similarly, Ms(cj ) = {cj−1, cj , cj+1} for j = 2, . . . , n − 1, Ms(c1) = {c1, c2} and Ms(cn) =
{cn−1, cn}.

These restrictions on the traders’ falsification abilities imply that there exists an ex-post bud-
get balanced, ex post individually rational incentive compatible mechanism with efficient trade.
Indeed, these properties are satisfied by the following social choice function: the good is trans-
ferred from seller cj to buyer bi iff i > j , at a price p(bi, cj ) ∈ [cj , bi], which is non-decreasing
in bi and cj . According to Corollary 1, the only incentive constraints that have to be satisfied are
that buyer type b2 (bn−1) be unwilling to mimic buyer type b1 (bn), and that seller type c2 (cn−1)
be unwilling to imitate seller type c1 (cn). But buyer type b2 has no incentive to mimic type b1,
as b1 never gets to trade. Further, buyer type bn−1 has no incentive to mimic bn, as she cannot
profit from trading with seller type cn−1, and would trade at a lower price with all types cj with
j < n − 1. Similar statements holds for seller types c2 and cn−1.

Example 3 (Honest Agents).
Next, we illustrate our approach in an environment where, due to honesty or bounded ratio-

nality, some agents are unable to misrepresent their types, while others have unlimited ability to
do so. Alger and Ma (2003) and Erard and Feinstein (1994) have analyzed models of this kind,
but their mechanisms do not fully exploit the restrictions on the agents’ communication abilities.

To illustrate our approach, consider an adverse selection problem in which an agent’s pref-
erence parameter is either θH (high income or productivity, good health, low cost) or θL (low
income or productivity, poor health, high cost). Additionally, an agent can either be ‘strategic’
(can submit verifying messages, or evidence, consistent with every preference parameter) or
‘honest’ (can submit verifying messages, or evidence, consistent only with her true preference
parameter). Corollary 1 implies that the only incentive constraints that must be imposed in the
optimal mechanism are that a ‘strategic’ agent does not wish to imitate any other type. So, the
mechanism designer does not need to leave any surplus to the ‘honest’ agents. Using mecha-
nism G, the designer first distinguishes ‘honest’ agents from ‘strategic’ ones, since each of the
former can submit only one verifying message corresponding to her true preference parameter,
while each of the latter can submit any and all verifying messages. The mechanism designer
further screens the ‘strategic’ agents by letting them choose from a menu.

Alger and Ma (2003) and Erard and Feinstein (1994) do not use menus or additional cheap
talk messages to further screen the agents who submit the same ‘evidence,’ and so the cardinality
of their allocation space does not exceed the cardinality of the preference parameter space. Be-
cause of this, their mechanisms do not attain the maximal level of profitability for the principal,
and leave informational rents to the ‘honest’ agents under certain probability distributions over
types.

An application of Example 3 to optimal taxation is available as an on-line supplement, at
http://www.severinov.com/verifiability_supplement.pdf.
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Example 4 (Unique Implementation).
An interesting application of our results pertains to standard complete information environ-

ments where each agent is informed of the realization of θ = (θ1, . . . , θL) and Mi = Θ for all i.
Maskin (1999) has shown that a necessary and sufficient condition for a social choice function
f : Θ → X to be uniquely implementable in Nash equilibrium is that it be monotonic.

Monotonicity is a rather strong requirement. We will now show that if there is a small prob-
ability that one agent is ‘honest,’ then the monotonicity condition can be dispensed with. More
specifically, let us modify the classical Nash environment to one that satisfies WNNRC as fol-
lows: there exists a single agent (without loss of generality let it be agent 1) who is ‘honest’
with probability ε, in which case M1 = {θ}, and ‘strategic’ with probability 1 − ε, in which case
M1 = Θ . All other agents are ‘strategic,’ i.e. Mi = Θ for i �= 2. We then have:

Lemma 3. Suppose that all agents have complete information, ui(·) is continuous in x with
ui(x, θi) = −∞ and X is path connected. Also, suppose that agent 1 is honest with probability
ε > 0. Consider any social choice function f : Θ → X s.t. ui(f (θ), θi) > −∞ for all θ ∈ Θ

and i = 1, . . . ,L. Then for any δ > 0 there exist a social choice function f̂ : Θ → X satisfying
|ui(f (θ), θi) − ui(f̂ (θ), θi)| � δ for all i and θ ∈ Θ , and a mechanism g with a unique Bayes–
Nash equilibrium, such that the outcome is f (θ) when agent 1 is ‘strategic’ and f̂ (θ) when
agent 1 is ‘honest.’

Proof of Lemma 3. Let f̂ (θ) be such that 0 < ui(f (θ), θi) − ui(f̂ (θ), θi) � δ. Agent 1—who
may be ‘honest’ or ‘strategic’—is asked to submit two reports, agent 2 is asked to provide a single
report, and all other agents do not submit any reports. Let the respective reports be denoted by
{θ11, θ12} and θ2. Now consider the following allocation rule:

g
(
θ11, θ12, θ2) =

⎧⎨
⎩

f (θ2), if θ11 �= θ12,

f̂ (θ2), if θ11 = θ12 = θ2,

x, if θ11 = θ12 �= θ2.

Under the allocation rule g(·), it is a strictly dominant strategy for the ‘strategic’ type of
agent 1 to send a report with θ11 �= θ12. Consequently, agent 2’s expected payoff from report-
ing θ truthfully strictly exceeds her expected payoff from reporting θ ′ �= θ , i.e. u2(f (θ), θi) >

(1 − ε)u2(f (θ ′), θi)+ εu2(x, θi) = −∞. Hence the outcome of the unique Bayes–Nash equilib-
rium of mechanism g is f (θ) when agent 1 is strategic, and f̂ (θ) when agent 1 is honest. �
4. Further limits on communication

So far, we have assumed that any agent i with feasible communication set Mi can send any
subset of Mi . This assumption is often satisfied in practice: if an agent possesses two different
pieces of evidence, she typically has the option to present both.

However, there are important cases in which agents cannot send all possible combinations of
feasible messages. Such restrictions may be due to cost, limited capacity of the communication
channels, limited attention span of the participants, etc.16

To extend our model to such cases we need to modify our notion of an agent’s type. For
any agent i let Ei ⊂ 2#C denote the set of all collections of verifying messages she can send in

16 One example is Glazer and Rubinstein’s (2004) analysis of debates where participants can make a limited number of
statements. Also, Sanchirico (2001) considers positive message costs in a court context.
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combination. An element Ei of Ei will be referred to as feasible message combination. In the
model of the previous sections, Ei = {M′

i | M′
i ⊆ Mi}. At the other extreme agent i may be

allowed to send only one basic message from the set Mi . Then Ei = {{mi} | mi ∈ Mi}. Message
combinations that do not belong to Ei are infeasible or too costly to send.

Agent i’s type is described by a pair ti = (θi, Ei ). As before, let Ti denote the set of all possible
types of agents i, T ⊂ ∏

i=1,...,L Ti the set of all possible type profiles, and F(t) the probability
distribution over agents’ types. The dependence of agent i’s set of feasible message combinations
on her type ti is indicated by Ei (ti). Let E (t) = ∏L

i=1 Ei (ti ) be the profile of feasible message
combinations, and E = {E (t): t ∈ ∏L

i=1 Ti} the set of all conceivable profiles.
A feasible mechanism is a dynamic game form with the property that at every information set

where player i can send verifying messages, type ti is restricted to sending message combinations
that belong to Ei (ti ) . Along any path of this game the union of verifying messages that a player-
type ti can send at different information sets must also belong to Ei (ti ).

Let h be the outcome function mapping the set of final histories of this game into X. We
say that a social choice function f : T → X is implementable in Bayesian (Perfect Bayesian)
equilibrium if there exist a dynamic mechanism and an associated Bayesian (Perfect Bayesian)
equilibrium σ such that f (t) = h(σ (t)).

Implementation in this environment raises new interesting issues. Particularly, a mechanism
needs to specify which feasible message combinations an agent should send. The answer will
typically depend on the other agents’ actions and the verifying messages they report in the mech-
anism. This suggests that dynamic mechanisms, in which agents have multiple opportunities to
send verifying messages and can use reporting strategies contingent on messages sent by other
agents in prior stages, can implement more outcomes than static mechanisms.

Contingent strategies are not necessary when all combinations of messages are feasible, for
then the agents can just report all their verifying messages simultaneously and at once. More
generally, Bull and Watson (2004b) have shown that dynamic game forms are not needed if
their “evidentiary normality” condition holds. This condition is analogous to the Nested Range
conditions of Green and Laffont (1986), and requires that for each agent-type there be a message
combination s.t. any other type who can mimic it, can mimic all message combinations of the
former.

In our analysis, we refrain from imposing any restrictions on the sets Ei and allow for an
arbitrary structure of feasible message combinations for different types. In this general set-up,
we show that a necessary and sufficient condition under which mechanisms with a single stage
of simultaneous presentation of verifying messages are sufficient is:

Assumption 1. For every i = 1, . . . ,L there exists xi ∈ X such that ui(xi, θ) � ui(x, θ), for all
θ ∈ Θ and x ∈ X.

Assumption 1 holds in many applications such as standard screening environments.

4.1. The revelation mechanism

Theorem 3 will establish that when Assumption 1 holds, it is enough to consider a simple
‘Revelation Mechanism’ R without sequential presentation of verifying messages. Mechanism
R has the following structure:
Stage 1. Agents simultaneously and privately choose from individual menus offered by the mech-
anism. Selection of a specific menu element subjects the agent to a corresponding request for
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evidence (verifying messages) in stage 2. We label each element ci in the menu Ci offered to
agent i by a different type of agent i, so Ci = {ci(ti): ti ∈ Ti}. Thus, an agent’s choice from the
menu serves as a cheap-talk announcement of her type.
Stage 2. The mechanism specifies (recommends) to each agent which combination of verifying
messages she should send. These recommendations are given to agents confidentially, but the
recommendation rule is common knowledge. Specifically, the recommendation rule uses agents’
choices in stage 1 as an input, and is described by a random mapping μ = ∏L

i=1 Ti 	→ Δ(E ),
such that μ(.|t) ∈ Δ(E (t)) for all t ∈ T . The projection of μ(.|t) on Δ(Ei (ti )) denoted by μi(Ei |
t1, . . . , tn) gives the probability with which the mechanism recommends that agent i send a set
of messages Ei if in the first stage agents have chosen the profile of elements (c(t1), . . . , c(tn))

from their respective menus.
Stage 3. Agents simultaneously send collections of verifying messages to the mechanism, and
the outcome is determined according to the outcome function of the mechanism.

The outcome function is a pair g(· | E, t) and gp(· | E, t) of probability distributions over
outcomes in X, where E = (E1, . . . ,En), and g(· | E, t) and gp(· | E, t) are implemented when
(i) in stage 1, agents choose a profile of menu elements (c1(t1), . . . , cn(tn)), (ii) in stage 3, agents
send a profile of message combinations E which is, respectively, recommended and not recom-
mended by the mechanism. Thus, given its game form, mechanism R is completely described by
a triple (μ,g, gp).

Mechanism R significantly reduces the complexity of the implementation task, because agents
send their verifying messages only once, and do so simultaneously. In contrast, in a general
dynamic mechanism agents may have to take decisions regarding which messages to send at
many different nodes of the game tree.

Let us now provide some intuition why mechanism R is optimal. In the first stage, agents
announce their types by making choices from the menus. These announcements are cheap talk.
The second stage in which agents send verifying messages serves both to check agents’ own
type announcements and to cross-check the type announcements made by other agents. Since
each agent can report only one feasible message combination, and since the current framework
permits an agent to have several non-nested feasible message combinations, it is advantageous
to design the mechanism in such a way that the recommendations issued to agents are made
contingent on other agents’ choices from the menus (i.e. their reported types). Thus, asking
agents to make choices from the menus before sending their verifying messages affords greater
flexibility, as an agent who announced a particular type in stage 1 can be asked to send various
feasible message combinations to cross-check different announced types of the other agents.

Abstracting from cross-checking other agents’ reports for a moment, the fact that an agent may
have several non-nested feasible message combinations also implies that the recommendations
issued in stage 2 are likely to be random. That is, an agent may be required to send several of
her feasible message combinations with a positive probability. Random recommendations make
imitation by other types of the same agent more difficult. To illustrate this point, consider the
following example:

Example 5. There is a single-agent who has three possible types: t1 = (θ1,E1,E2), t2 =
(θ2,E1), and t3 = (θ3,E2), where E1 = {m1,m2} and E2 = {m1,m3}. The set of outcomes is
X = {a, b, d}, and the agent is an expected utility maximizer, with a utility function given by
u(a, θi) = 10, u(b, θi) = 6, u(d, θi) = 0, for i ∈ {1,2,3}.

Consider implementation of the social choice function f (t1) = a, f (t2) = f (t3) = b. Observe
that f (·) is not implementable via any mechanism in which t1 does not have to randomize and
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sends either E1 or E2 with probability 1. In this case, either t2 or t3 will imitate t1’s strategy
by sending the same message set as t1. In fact, it is easy to see that t2 (t3) will follow t1’s
strategy to the extent feasible if this strategy requires t1 to send E1 (E2) with probability of at
least 0.6. However, f1(·) is implementable via mechanism R, in the first stage of which the agent
is offered a menu consisting of three elements. The recommendation rule μ(·|t) and the outcome
functions of the mechanism g(· | E, t) and gp(· | E, t) (probability distributions over outcomes)
are described as follows:

Menu Element 1. μ(·|t1): μ(Ei |t1) = 1/2; g(a | Ei, t1) = 1 for i ∈ {1,2}, and gp(d | E, t1) = 1.
Menu Element 2. μ(·|t2): μ(E1|t2) = 1; g(b | E1, t2) = 1 and gp(d | E, t2) = 1.
Menu Element 3. μ(·|t3): μ(E2|t3) = 1, g(b | E2, t3) = 1 and gp(d | E, t3) = 1.

The strategy space of player i of type ti in mechanism R is given by 
i(ti) = {(ci, δi) |
ci ∈ Ci , δi : Ei → Ei (ti )}. We will say that a strategy of agent-type ti is truthful and obedient if
it prescribes that ti choose element ci(ti) from the menu, and obey the recommendation from
μi(· | ti , t−i ).

Theorem 3. Suppose Assumption 1 holds. Then a social choice function implementable in
Bayesian equilibrium of some, possibly dynamic, mechanism is also implementable in a Per-
fect Bayesian equilibrium of mechanism R in which all agent-types follow truthful and obedient
strategies.

Theorem 3 shows that as long as Assumption 1 holds, from the viewpoint of implementation
there is no loss of generality in considering only incentive compatible revelation mechanisms R.
Thus, we extend Theorem 6 in Bull and Watson (2004b) which restricts consideration to dynamic
games in which the agents may disclose evidence at most once along any path of the game tree.
In contrast, Theorem 4 considers a larger class of games and mechanisms in which players can
reveal verifying information at several nodes in the game. In this case Assumption 1 becomes
necessary for mechanism R to be sufficient for implementation.

Corollary 3 describes the incentive constraints that must be imposed on implementable social
choice functions:

Corollary 3. Suppose Assumption 1 holds. Then a social choice function f : T → X is imple-
mentable in Bayesian equilibrium if and only if the following condition holds:

For all t ∈ ∏
i Ti , there exist a probability distribution μ(·|t) ∈ Δ(E ), and a probabil-

ity distribution g(· | E, t) ∈ Δ(X), such that μ(·|t) ∈ Δ(E (t)) and g(f (t) | E, t) = 1 for all
E ∈ suppμ(·|t) and all t ∈ T ,17 and such that for every i = 1, . . . ,L, and every ti , t

′
i ∈ Ti we

have ∑
t−i∈T−i

ui

(
f (ti , t−i ), θ

)
F(t−i |ti )

�
∑

t−i∈T−i

{ ∑
E:Ei∈Ei (ti )

∑
x∈X

ui(x, θ)g
(
x | E,

(
t ′i , t−i

))
μ

(
E | t ′i , t−i

)

+
∑

E:Ei /∈Ei (ti )

ui(xi, θ)μ
(
E | t ′i , t−i

)}
F(t−i |ti ). (2)

17 Recall that our analysis allows for the possibility that T �= ∏
Ti .
i
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To understand the corollary, suppose that mechanism R with outcome triple (μ,g, gp) imple-
ments f (·). Then, we must have g(f (t) | E, t) = 1 for all E ∈ suppμ(t) and all t ∈ T . Also, as
shown in the proof of Theorem 3, the largest set of social choice functions is implemented when
gp(·) assigns xi , the worst outcome of agent i, when i is the only agent who does not send the
recommended set of messages. Therefore, if i deviates in the choice from the menu, her optimal
continuation strategy is to send the recommended set of messages whenever she is able to do so.
Thus, type ti ’s payoff from choosing a menu element c(t ′i ) is given by the right-hand side of (2).
Since f (·) is implementable, the family of incentive constraints (2) must hold.

In checking the implementability of a social choice function, Corollary 3 transforms the com-
plicated task of finding an appropriate mechanism or disproving its existence, to the simpler one
of checking the existence of a solution to a linear program. In an important special case, it permits
a very simple characterization of the set of implementable outcomes:

Corollary 4. Suppose that ui(xi, θ) = −∞ for all i ∈ 1, . . . ,L, and that f (·) is such that
ui(f (t), θi) > −∞. Then (2) becomes∑

t−i∈T−i

ui

(
f (ti , t−i ), θ

)
Fi(t−i |ti )

�
∑

t−i∈T−i

ui

(
f

(
t ′i , t−i

)
, θ

)
Fi(t−i |ti ), for all t ′i = (

θ ′
i ,E

′
i

) ∈ Ti s.t. E′
i ⊂ Ei.

Notice the analogy to Corollary 1: the only incentive constraints that need to be imposed upon
a social choice function is that type ti not prefer the allocation of any type t ′i that she can fully
imitate, i.e. such that any feasible message combination of type t ′i is available to type ti . This is
because the distribution μi(·|t) can be chosen to assign equal weights to all elements of Ei (ti ).
Then if type ti selects the menu element c(t ′i ) and is unable to send some message combination
feasible for t ′i , she is punished harshly.

4.2. The role of a debate in mechanisms

Next, we show that when Assumption 1 does not hold, then dynamic mechanisms in which
agents take turns sending verifying messages and some agents send such messages more than
once can implement more outcomes than the revelation mechanism R:

Theorem 4. Suppose Assumption 1 does not hold. Then there exist environments and social
choice functions implementable in Perfect Bayesian equilibrium of a dynamic mechanism in
which some agents send verifying messages at several information sets along some paths of
the game, but not implementable in Bayesian equilibrium via the Revelation Mechanism R.

Note that, to make out result stronger, we prove the impossibility of implementation via mech-
anism R using a weaker concept of Bayesian equilibrium, but construct a dynamic mechanism
implementing the desired social choice function in Perfect Bayesian equilibrium.

If a social choice function is not implementable in Bayesian equilibrium via mechanism R,
then, as shown by Bull and Watson (2004b), it cannot be implemented in Bayesian equilibrium
via any mechanism in which each agent sends verifying message/presents evidence only once
along any path of the game. Thus, our Theorem 4 implies that, without Assumption 1, in some
environments it is necessary to have agents present evidence more than once in the course of the
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game, taking turns in doing so. So the mechanism has to be designed in the form of a debate.
This result provides a foundation for a theory of debates in environments with asymmetric in-
formation. In contrast, Theorem 3 shows that such dynamic mechanisms are not needed when
Assumption 1 holds.

The intuition behind Theorem 4 is as follows. Suppose that some agent i can present only
two messages from her set of verifying messages, and the desired social choice function is im-
plementable only if she does so. Specifically, suppose that i’s first message provides a partial
verification of her type, while her second message can complete the screening if it is chosen
properly and cross-checked against the claims of other agents. So, which second message agent i

is requested to send depends on the claims submitted by the other agent(s). In a dynamic mecha-
nism, agent i could initially send just her first verifying message. Then at some later point in the
mechanism she receives a request from the mechanism for a specific second verifying message,
and submits it on the equilibrium path. Importantly, which second message is requested gives
agent i additional information about the types of the other agent(s). Therefore, this sequence
of events is important for implementability. Specifically, an alternative sequence where agent i

is told which second message she has to send before she has communicated her first message,
could, in fact, undermine the incentive compatibility of sending the ‘right’ first verifying mes-
sage. But this alternative sequence of events does, in fact, occur in the Revelation mechanism or
any mechanism where agents submit verifying messages only once. In the proof of Theorem 4
we show that such early release of information to some agent could make implementation impos-
sible in mechanism R. On the other hand, when some agent sends verifying messages more than
once, the mechanism designer can make requests for specific verifying messages, and thereby
release additional information to the agent, after the agent has already sent other verifying mes-
sages. This makes it easier to ensure that the agent still has incentives to send her first bunch of
messages, which increases the scope of implementability.

5. Conclusion

We have studied implementation in environments where some agents have limited ability to
imitate the behavior of other types and manipulate their private information. The principal can
use such limitations to better screen the agents, and elicit information regarding their preference
parameters more efficiently. The agents’ abilities to prove claims play an important role in deter-
mining their payoffs, with those who possess larger sets of verifying messages receiving higher
informational rents.

As noted in the introduction, our paper is closely related to the recent work of Bull and Watson
(2004b) and Forges and Koessler (2005). Bull and Watson (2004b) consider a setting in which
agents can present state-contingent collections of pieces of evidence, and focus on the role of
“evidentiary normality.” They establish a version of the revelation principle, by constructing a
mechanism for which there is a one-to-one mapping between cheap talk report/evidence pairs
produced in equilibrium and players’ types. They also show that in settings with complete in-
formation, evidentiary normality permits a translation into the direct revelation model studied
by Green and Laffont (1986). Finally, Bull and Watson (2004b) were first to raise the important
question whether static mechanisms suffice for implementation when players cannot send all
possible message combinations. Their pioneering work shows that a simple three-stage dynamic
mechanism suffices, when the designer is limited to game forms in which each player can send
evidence only once along any path of the tree.
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There are several important differences between our work and Bull and Watson (2004b). First,
under evidentiary normality Bull and Watson (2004b) establish equivalence results similar to
our Theorem 1, but their equivalence results are established for static mechanisms and dynamic
mechanisms in which every agent can send her evidence (verifying messages in our terminology)
only once. Our Theorem 1 implies that the latter restriction on dynamic mechanisms is unneces-
sary, i.e. the scope of our Theorem 1 is broader. Our paper also goes further by identifying the
conditions under which all verifying messages have to be sent.

Second, the analysis of dynamic mechanisms in Bull and Watson (2004b) when evidentiary
normality does not hold (the counterpart of the environment studied in our Section 5) is also
restricted to a class of mechanisms in which each agent is allowed to present evidence only once
along any path of the game tree. Bull and Watson (2004b) show that any social choice rule im-
plementable via a mechanism of this class can also be implemented via a special three-stage
mechanism. As we demonstrate, their restriction on the class of dynamic mechanisms is substan-
tive. We establish a necessary and sufficient condition under which one can restrict attention to
the Revelation mechanism R—which is similar to the three-stage mechanism of Bull and Wat-
son (2004b)—and, hence, to mechanisms in which every agent presents evidence only once along
any path of the game tree. This condition requires all types of any particular agent to receive the
lowest utility from the same allocation. Our Theorem 4 establishes that, when this condition
fails, dynamic mechanisms in which agents take turns submitting verifying messages, with some
agents submitting such messages more than once, implement a larger set of social choice func-
tions than are implementable via our Revelation mechanism R or the three-stage mechanism of
Bull and Watson (2004b).

A third important difference is that we characterize the set of implementable allocations in
terms of the incentive constraints that need to be satisfied (see Corollaries 1, 3, 4). This is im-
portant as the Revelation Principle has proven to be of value in standard environments largely
because it permits such a characterization. Indeed, the task of determining which social choice
functions are implementable then boils down to solving a linear program.

Finally, our model allows for a stochastic relationship between an agent’s preference param-
eter and her set of verifying messages. In Bull and Watson (2004b), an agent’s type determines
both her preferences and her evidence (set of verifying messages in our terminology). This im-
plies that either there is a deterministic relationship between an agent’s preference parameter and
her evidence, in which case our model allows for a broader range of uncertainty and incomplete
information, or one has to broaden their notion of type so that it includes both a description
of the agent’s preference parameter and her set of verifying messages.18 However, in this case
there is a qualitative difference in the amounts of communication required by mechanism our G

and its counterpart in Bull and Watson (2004b). In the broader interpretation of their model, an
agent would make a cheap talk announcement of her preference parameter and the evidence she
has available, prior to presenting that evidence. In mechanism G an agent makes a cheap talk
statement only about her preference parameter.19

Forges and Koessler (2005) analyze the communication equilibria of a fixed game. In a
communication stage preceding the game, in each of a fixed number of periods players simul-
taneously send a cheap-talk message and a verifying message to the mediator, and then receive

18 We are thankful to a referee for suggesting that the model of Bull and Watson (2004b) admits such an interpretation.
19 The structure of mechanism G allows us to further reduce the amount of required communication in special cases.
For example, when an agent’s set of verifying messages uniquely determines her preference parameter no cheap-talk
message is required.



R. Deneckere, S. Severinov / Games and Economic Behavior 64 (2008) 487–513 505
a message back from him. At the end of the communication stage, players select their actions
in the game. Theorem 3.1 of Forges and Koessler (2005) characterizes the Nash equilibria of
this communication game in terms of truthful and obedient equilibria of a three-stage game in
which players first simultaneously submit a cheap talk claim regarding their type and a “certifi-
cate” regarding their type (a report from a type-dependent message space) to the mediator, who
then makes private recommendations to players on the actions to be taken in the game. Thus, the
relationship between Theorem 3.1 of Forges and Koessler (2005) and our Theorem 1 is akin to
the relationship between communication equilibria of a Bayesian game (where players’ strategy
choices determine the outcome, and the mediator facilitates communication) and the set of im-
plementable outcomes of a Bayesian collective choice problem where the mechanism designer
can construct any game and introduce any communication protocol. In particular, the mechanism
designer can require players to play the communication game of Forges and Koessler (2005) and
commit to the action rule chosen by players in the associated communication equilibrium. Forges
and Koessler (2005) do not analyze general restrictions on the message combinations that player
can send (as we do in Section 4), but they do investigate the interesting case in which there is a
single period of communication (so players can only send one verifying message). Importantly,
their Theorem 3.3 establishes that under a “minimal closure condition” lengthening the commu-
nication stage will not expand the set of equilibrium outcomes. The latter condition is analogous
to evidentiary normality in Bull and Watson’s (2004b) setting and to Corollary 2 in our setting.

We end this section with some suggestions for future work. The model and methodology
presented in this paper open up an avenue for interesting applications to many areas, such as
adjudication procedures, contract design, negotiation and price discrimination. In these appli-
cations, costs of information transmission or limited attention span of the participants impose
restrictions on the number of messages that can feasibly or optimally be elicited. The results of
Section 4 permit progress in these intriguing areas of research. In particular, our own research
focuses on the optimal design of debating rules in settings of incomplete information.
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Appendix A

Proof of Proposition 1. Suppose that there is one agent, of three possible types:
(θ1, {m1,m2,m3,m4}), (θ2, {m2,m3,m4,m5}), or (θ3, {m1,m3,m5}).

The outcome space is X = {x1, x2, x3}, and preferences are: x3 ≺θ1 x2 ≺θ1 x1, x3 ≺θ2 x1 ≺θ2

x2, and x3 ≺θ3 x1 ≺θ3 x2. Define social choice functions f 1(·), f 2(·), f 3(·), f 4(·) as follows:

f 1(θ1) = x1, f 1(θ2) = x2, f 1(θ3) = x3; f 2(θ1) = x1, f 2(θ2) = x3, f 2(θ3) = x1;
f 3(θ1) = x3, f 3(θ2) = x1, f 3(θ3) = x1; f 4(θ1) = x3, f 4(θ2) = x3, f 4(θ3) = x2.

Note that f 1(·) is implementable via the mechanism with outcome function g1(m2) = x1,
g1(m4) = x2, g1(m1) = g1(m3) = g1(m5) = x3. Also f 2(·) is implementable via the mechanism
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with outcome function g2(m1) = x1, g2(m2) = g2(m3) = g2(m4) = g2(m5) = x3, and f 3(·) is
implementable via the mechanism g3(m5) = x1, g3(m1) = g3(m2) = g3(m3) = g3(m4) = x3.
On the other hand, f 4(·) is not implementable because any message available to θ3 is available
either to θ1 or θ2, and each of these two types prefers to receive x2 rather than x3.

Now, let us show that there is no model in which type θi has message spaces M(θi) ⊂ Θi

satisfying θi ∈ M(θi) for i = 1,2,3, that has the same set of implementable allocations. We will
henceforth refer to such model as ‘direct’ because in such a model agents send direct messages
about their preference parameter.

Observe that for the social choice function f 1(·) to be implementable in a direct model, it
must be that M(θ3) = {θ3}. Indeed, if θ1 ∈ M(θ3), then such implementation must rely on an
outcome function ĝ(·) such that ĝ(θ1) = ĝ(θ3) = x3. But then since only message θ2 can map
into an outcome different from x3 it would be impossible for types θ1 and θ2 to obtain their
respective allocations. A symmetric argument rules out θ2 ∈ M(θ3).

Observe also that the social choice function f 2(·) is implementable in a direct model only if
θ3 /∈ M(θ2). Indeed, since M(θ3) = {θ3}, then the outcome function ĝ(·) implementing f 2(·) in
a direct model must satisfy ĝ(θ3) = x1. So, if θ3 ∈ M(θ2), then type θ2 could do better by sending
θ3 and obtaining the allocation x1. A symmetric argument establishes that implementability of
f 3(·) in a direct model requires that θ3 /∈ M(θ1).

Now consider any direct model satisfying the restrictions M(θ3) = {θ3}, θ3 /∈ M(θ1) and
θ3 /∈ M(θ2). In any such model, the social choice function f 4(·) is implementable via the mech-
anism g(θ3) = x2 and g(θ1) = g(θ2) = x3, contradicting that the set of implementable allocations
coincides with the one in the model with message spaces M(θ1), M(θ2), M(θ3). �
Proof of Theorem 1. Fix an environment {X, C, T ,F (·), u1(·), . . . , uL(·)}, and suppose that
the social choice function f (·) : T → X is implementable in Bayesian equilibrium via some
mechanism γ with strategy space Sγ = ∏L

i=1 S
γ

i and outcome function gγ : Sγ 	→ X. Let
s∗(t) = (s∗

1 (t1), . . . , s
∗
L(tL)) be the strategy profile in the equilibrium of the mechanism γ which

implements f (·). Thus, we have f (t) = gγ (s∗(t)).
The proof relies on cheap-talk messages, but we indicate below how the mechanism can

be implemented via menus rather than cheap-talk messages. Construct the mechanism Gγ (·)
as follows. If the agents send a profile of collections of verifying messages (M̂1, . . . , M̂L)

in the first stage and then announce a profile of preference parameters (θ̂1, . . . , θ̂L) such
that (M̂i , θ̂i ) ∈ Ti for all i = 1, . . . ,L, then the mechanism Gγ (·) implements the outcome
gγ (s∗

1 (θ̂1, M̂1), . . . , s
∗
L(θ̂L, M̂L)). Note that s∗

i (θ̂i , M̂i ) is well-defined for all i ∈ {1, . . . ,L},
since (θ̂i , M̂i ) ∈ Ti .

If (M̂i , θ̂i ) is such that M̂i /∈ Ni (i.e. there it no type ti ∈ Ti whose full set of verifying
messages is M̂i ) and (M̂j , θ̂j ) ∈ Tj for every agent j �= i, then the mechanism Gγ assigns the
outcome which will be attained in mechanism γ when agent i follows some arbitrarily fixed
strategy that involves sending no verifying messages at any information set in γ and every other
agent j �= i follows the strategy s∗

j (θ̂j , M̂j ). Finally, if there are at least two agents, i and i′,
such that M̂i /∈ Ni and M̂i′ /∈ Ni′ , then Gγ assigns some arbitrarily fixed outcome.

Since f (t) = gγ (s∗(t)), the mechanism Gγ (·) implements f (t) if all agents follow truth-
fully revealing strategies. To complete the proof let us show that these strategies consti-
tute a Bayesian equilibrium of Gγ (·). So, suppose that all agents other than i follow truth-
fully revealing strategies. Consider the best response by agent i of type ti = (Mi , θi) ∈ Ti .
If this agent-type sends a collection of messages M̂i and announces preference parame-
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ter θ̂i ∈ Θi , then M̂i ⊆ Mi . Further, if (M̂i , θ̂i ) ∈ Ti , then Gγ (·) assigns the outcome
gγ (s∗

1 (θ1,M1), . . . , s
∗
i (θ̂i , M̂i), . . . , s

∗
L(θL, ML)) whenever the type profile of all agents other

than i is given by ((θ1,M1), . . . , (θi−1,Mi−1), (θi+1,Mi+1), . . . , (θL,ML)). But since s∗
i (·) is

agent i’s best response strategy in γ , type ti = (Mi , θi) gets a (weakly) higher payoff by follow-
ing the truthfully revealing strategy in Gγ , i.e. when (M̂i , θ̂i ) = (Mi , θi).

Second, suppose that agent i announces M̂i such that there is no ti ∈ Ti with the set of veri-
fying messages M̂i . Since the other agents follow truthfully revealing strategies, Gγ (·) assigns
an arbitrarily fixed outcome of γ that obtains when i does not send any verifying messages. This
outcome if worse for agent i than the outcome that she gets from a truthfully revealing strategy,
because the strategy profile s∗(·) constitutes an equilibrium of γ .

Note that the same equilibrium outcome is attained in Gγ if, instead of cheap talk, in the
second stage agent i is asked to choose from a menu of allocation functions{

f (θ̂i , M̂i , ·) : T−i → X
}
θ̂i∈Ii (Mi )

after she reports some M′
i ∈ Ni in the first stage. This is a menu of allocation func-

tions since the agent does not know the reports of the other agents and the final allocation
f (θ̂1, M̂1, . . . , θ̂L, M̂L) is contingent on every agent’s report. Choosing a particular element
from this menu is equivalent to announcing some preference parameter θ̂i .

To show that mechanisms of class G permit to implement a larger set of social choice
rules than mechanisms in which agents do not have to send all their verifying messages, con-
sider the following example. There is a single agent with three types t1 = (θ1, {m1,m2}),
t2 = (θ2, {m2,m3}), t3 = (θ3, {m3,m1}). The decision space is given by X = {x1, x2, x3, x}. The
outcome x is the worst for every type, and the rest of the payoff structure is as follows:

u1(x1, θ1) < u1(x2, θ1) < u1(x3, θ1),

u2(x2, θ2) < u2(x3, θ2) < u2(x1, θ2),

u3(x3, θ3) < u3(x1, θ3) < u3(x2, θ3).

Consider the social choice function f (t1) = x1, f (t2) = x2, f (t3) = x3. Then a mechanism
which assigns some allocation xi , i ∈ {1,2,3}, after receiving only one of the messages m̂ ∈
{m1,m2,m3} cannot implement f (·). One of the types tj �= ti who can send message m̂ will find
is strictly profitable to do so, since this will yield allocation xi rather than xj .

However, f (·) can be implemented via the following mechanism G(·): if the agent reports
{mi,m(i+1)mod 3} she receives the allocation xi , otherwise she receives the allocation x. �
Proof of Lemma 1. Consider any social choice rule f (·) and the corresponding mechanism G.
By NNRC, if (θi, Mi , θ−i , M−i ) ∈ T and (θ ′

i , M′
i ) is such that θi �= θ ′

i and M′
i ⊆ Mi , then

(θ ′
i , M′

i , θ−i , M−i ) /∈ T , and so G(θ ′
i , M′

i , θ−i , M−i ) = x. Consequently, all incentive con-
straints hold in G, and f (·) is implementable. �
Proof of Lemma 2. The condition of the lemma guarantees that any type t ′i of agent i, who
is unable to mimic ti when ti ’s set of verifying messages is Mi remains unable to mimic ti
after ti ’s set of verifying messages shrinks to Mi � {mi}. This together with the fact that the
probability distribution F(·) does not change imply that the set of incentive constraints which
an implementable social choice function has to satisfy (see Corollary 1) remains the same after
Mi shrinks, and so the set of implementable choice functions remains unchanged. Conversely,
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when the condition of the lemma is violated, it is easy to construct examples where profitable
deviations appear after agent i’s set of verifying messages shrinks. �
Proof of Theorem 2. Note that mechanism H is well-defined, i.e. any collection of messages
sent in H by agent i corresponds to a unique Mi ∈ Ni . Precisely, if M′

i is s.t. M′
i �= Mi then

Ai (M′
i ) �= Ai (Mi ). To see this, suppose otherwise. First, consider M′

i s.t. Mi \ M′
i �= ∅. Then

M′
i ∈ Zi(Mi ) = Zi(Ai (Mi )). Thus if we had Ai (M′

i ) = Ai (Mi ), we would obtain the contra-
diction that M′

i ∈ Zi(Ai (M′
i )). Next, suppose that Mi ⊂ M′

i and the inclusion is strict. Then
Mi ∈ Zi(M′

i ) = Zi(Ai (M′
i )). But then Ai (M′

i ) = Ai (Mi ) would imply the contradiction that
Mi ∈ Zi(Ai (Mi )).

Since mechanisms G and H differ only in the sets of verifying messages which agents
send (their passwords), and since each agent i can send the collection of messages Ai (Mi )

in mechanism H iff she can send the collection of messages Mi in mechanism G, any s.c.f.
implementable via G is also implementable via H . The reverse follows by Theorem 1.

To establish that in general agent i of type (θi, Mi ) has to send at least #Ai (Mi ) messages,
consider the single-agent example studied in the proof of Theorem 1. We have #A(M(θi)) = 2
for all i = 1,2,3. In the proof of Theorem 1, we have established the existence of a so-
cial choice function that can be implemented only if every type sends at least two mes-
sages. �
Proof of Theorem 3. Suppose that the social choice function f : T → X is implementable via
some, possibly dynamic, mechanism Γ with outcome function h, i.e. there exists a Bayesian
equilibrium σ ∗(·) = (σ ∗

1 (·), . . . , σ ∗
L(·)) of Γ such that f (t) = h(σ ∗(t)). Let us construct a rec-

ommendation rule μ(·) and outcome functions g(·) and gp(·) so that the mechanism R associated
with (μ,g, gp) has a Perfect Bayesian equilibrium in which all agent-types follow truthful and
obedient strategies and the outcome of which is given by f (·).

First, let μ(·|t) be the probability distribution over E (t), such that for any E = (E1, . . . ,EL) ∈
E (t), μ(E|t) equals the probability that on the path of the game associated with mechanism
Γ agent i (i = 1, . . . ,L) sends a collection of messages the union of which is equal to Ei

when the agents’ type profile is given by t = (t1, . . . , tL) and they play the profile of strate-
gies σ ∗(t).

Next, let f̃ (· | E, t) denote the probability distribution over outcomes of Γ conditional on the
type profile being t , the agents following the strategy profile σ ∗(t), and the realized collection
of messages along the path of the game being E. Set g(· | E, t) = f̃ (· | E, t) for all t ∈ ∏L

i=1 Ti

and note that for any t ∈ T the distribution f̃ (x | E, t) puts weight only on x = f (t). The choice
of the outcome function g(· | E, t) implies that if all agent-types follow truthful and obedient
strategies, then f (·) is implemented. Finally, suppose the mechanism recommends Er (i.e. the
realization of μ(·|t) equals Er ), yet the agents report E �= Er . Then we let the punishment
gp(· | E, t) assign probability one to the outcome x

î
, where î = min{i | Er

i �= Ei}.
Let us now demonstrate that (μ,g, gp) has a Perfect Bayesian equilibrium in which all agent-

types follow truthful and obedient strategies. First, given any realized profile of types t and
any first-stage profile of menu choices (c1(t̃1), . . . , cL(t̃L)), it is optimal for agent i to obey the
mechanism’s recommendation whenever possible, i.e. whenever the mechanism recommends
Er

i ∈ Ei (ti ), irrespective of her beliefs.20 Indeed, sending Ei �= Er
i either results in i = î (yielding

20 This implies that our equilibrium is Perfect Bayesian, and not just Bayesian.
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i the worst possible outcome xi ), or does not change the outcome if some j , j < i, does not obey
the recommendation, i.e. Ej �= Er

j .

Next, let us show that agent i of type ti cannot gain by selecting ci(t̃i ) �= ci(ti) from the
menu when every agent j �= i of type tj chooses element cj (tj ) from her menu and obeys the
mechanism’s recommendation (in this case, by construction, Er

j ∈ Ej (tj ) for every j �= i).
By construction of mechanism R, the expected payoff which type ti obtains after choosing

ci(t̃i ) in R does not exceed the expected payoff that she would obtain in mechanism Γ when
other agents use σ ∗−i (t−i ) and agent i employs a strategy σ̂D

i which: (i) coincides with σ ∗
i (t̃i ) at

information sets where this is feasible, (ii) at other information sets (those where with positive
probability σ ∗

i (t̃i ) prescribes that i send collections of messages that do not belong to Ei (ti))
prescribes that i send collections of messages from Ei (ti) with the same probability as prescribed
by σ ∗

i (t̃i ), and send arbitrary collections of messages with complementary probability.
Indeed, in mechanism R any realization Ei of μi(t̃i , t−i ) that belongs to Ei (ti) occurs with the

same probability as on paths of the game Γ along which agent i sends the collection of verifying
messages Ei when agents use the strategy profile (σ ∗

i (t̃i ), σ
∗−i (t−i )). Conditional on these events

in the respective games, the outcomes of R and Γ coincide and are distributed according to
g(· | E, (t̃i , t−i )).

Similarly, in mechanism R realizations Ei of μi(t̃i , t−i ) that do not belong to Ei (ti ) occur
with the same probability as on paths of the game Γ in which agent i sends the collection of
verifying messages Ei when agents use the strategy profile (σ ∗

i (t̃i ), σ
∗−i (t−i )). Conditional on

these events in the respective games, the outcome of R (given by xi) yields agent i a payoff
no higher than in the corresponding outcome of Γ . Hence, after choosing element ci(t̃i ) from
the menu of mechanism R, agent i of type ti gets an expected payoff that does not exceed her
expected payoff in mechanism Γ when she uses strategy σ̂D

i .
But by choosing menu element ci(ti) in mechanism R agent type ti gets an expected payoff

that coincides with her expected payoff in Γ when the strategy profile σ ∗(t) is followed. Since
σ ∗(t) is an equilibrium of Γ , a deviation from σ ∗

i (ti ) to σ̂D
i is not profitable for agent i in Γ .

Consequently, the deviation to choosing menu element ci(t̃i ), t̃i �= ti , in mechanism R is subop-
timal. Hence, in mechanism R it is optimal for type ti to choose menu element ci(ti) and follow
the principal’s recommendation. �
Proof of Theorem 4. To prove the theorem, consider the following two-agent example.
Agent 2 has two possible types: t1

2 = (θ1
2 , m̃1) and t2

2 = (θ2
2 , m̃2). Agent 1 has four possi-

ble types: t1
1 = (θ1

1 , {{m1,m2},{m1,m3}}), t2
1 = (θ2

1 , {m1,m2}), t3
1 = (θ3

1 , {m1,m3}) and t4
1 =

(θ4
1 , {m2,m3,m4}).21

The type combinations (t2
1 , t2

2 ) and (t3
1 , t1

2 ) are infeasible, i.e. F(t2
1 , t2

2 ) = F(t3
1 , t1

2 ) = 0. Ad-
ditionally, let F(t1

1 |t1
2 ) = F(t1

1 |t2
2 ) = p1

1 > 0, F(t4
1 |t1

2 ) = F(t4
1 |t2

2 ) = p4
1 > 0, and F(t2

1 |t1
2 ) =

F(t3
1 |t2

2 ) = p̂1 = 1 − p1
1 − p4

1 > 0. Finally, letting F2(t
1
2 ) = p1

2 and F2(t
2
2 ) = p2

2, we assume that
0.4 � p1

2 < 1/2.
Let X = {x0, x11, x12, x2, x3, x4}. The social choice function f we wish to implement is

f (t1
1 , t1

2 ) = x11, f (t1
1 , t2

2 ) = x12, f (t2
1 , t1

2 ) = x2, f (t3
1 , t2

2 ) = x3, and f (t4
1 , t1

2 ) = f (t4
1 , t2

2 ) = x4.
The utility function u1(x, t1, t2) of agent 1 is given by:

21 To achieve some economy of notation in the description of agent 1’s types, we list only the largest collections of
verifying messages she can send; we do allow her to send any subset of those.
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x11 x12 x2 x3 x4 x0

t1
1 1 2 0.9 0.9 10 1.5
t2
1 , t3

1 10 10 2 2 10 0
t4
1 200 200 200 200 2 1

Note that this preference structure violates Assumption 1. The preferences of agent 2 are given
by u2(x0, t

i
2, t

j

1 ) = −K for some large K > 0, and u2(x, t i2, t
j

1 ) = 0 for all i, j and x ∈ X \ x0.22

The incentive problem can intuitively be described as follows. Agent 2 can be easily induced
to submit her verifying message, and thereby reveal her type, if the mechanism implements x0
whenever agent 2 sends nothing. For agent 1, type t4

1 prefers the allocation designed for any
other type of agent 1 to x4. In order to prevent t4

1 from having access to these other allocations,

types t
j

1 , j ∈ {1,2,3}, must present evidence unavailable to t4
1 , i.e. send m1. Similarly, type t

j

1 ,
j ∈ {1,2,3}, prefers x4 to her own allocation, so type t4

1 must present m4. Finally, since types t2
1

and t3
1 prefer the allocations designed for type t1

1 to their own allocations, type t1
1 must distinguish

itself from those types. This can be accomplished with the help of agent 2: when agent 2 sends
m̃2, then type t1

1 must send m2 (which is unavailable to t3
1 ); when agent 2 sends m̃1, then type t1

1
must send m3 (which is unavailable to t2

1 ).
Consider the following extensive form mechanism:
Stage 1. Agent 1 is given an opportunity to send verifying messages.

If she sends message m4, then implement x4. If she sends message m1, then go to stage 2.
Otherwise implement x0.

Stage 2. Agent 2 is given an opportunity to send verifying messages.
If she sends m̃1 or m̃2, then go to stage 3. Otherwise implement x0.

Stage 3. Agent 1 is given a second opportunity to send verifying messages.
(i) If agent 1 sends no message, then implement x2.
(ii) If agent 2 has sent m̃1 in stage 2, and agent 1 sends m2 in stage 3, then implement x2.
(iii) If agent 2 has sent m̃1 in stage 2, and agent 1 sends m3 in stage 3, then implement x11.
(iv) If agent 2 has sent m̃2 in stage 2, and agent 1 sends m2 in stage 3, then implement x12
(v) If agent 2 has sent m̃2 in stage 2, and agent 1 sends m3 in stage 3, then implement x3.

It is straightforward to verify that the following strategies form a perfect Bayesian equilibrium
that implements f (·). Agent 2 of either type sends her available message. Agent 1 of type t4

1
sends message m4 in stage 1, and agent 1 of type t2

1 (t3
1 ) sends message m1 in the first stage and

her other message in stage 3. Agent type t1
1 sends message m1 in the first stage and, in the third

stage sends message m2 (m3) if agent 2 has sent m̃2 (m̃1) in the second stage. �
Impossibility of implementing f (·) in the Revelation Mechanism

Suppose to the contrary that there exists a Revelation Mechanism R = (μ,g, gp) that imple-
ments f (·) in Bayesian equilibrium.

For brevity, we will refer to agents’ choices in stage 1 of this mechanism as type announce-
ments. Recall that such cheap-talk announcements are equivalent to choices from menus. Also,
we need to introduce some additional notation. Let g∗e(· | E1, t1, t̂1) be the expected probability

22 Slightly modifying the preferences of agent 2 would ensure that s.c.f. f is ex post efficient, and is still implementable
via our mechanism.
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distribution over outcomes assigned when all of the following happen: (i) agent 1 has type t1
and announces type t̂1, (ii) agent 2 announces her type truthfully, whatever it is, and sends the
requested verifying message, (iii) in stage 3 agent 1 is requested to send the set of verifying mes-
sages E1 and does so. Note that the expectation is taken with respect to type of agent 2, given
type t1 of agent 1.

Further, let gp(· | t1, t̂1,E1, Ê1) be expected probability distribution over outcomes assigned
when all of the following happen: (i) agent 1 has type t1 and announces type t̂1 in stage 1,
(ii) agent 2 announces her type truthfully in stage 1 and sends the requested verifying message;
(iii) in stage 3 agent 1 is requested to send the set of verifying message E1 and sends Ê1.

The revelation mechanism has to satisfy the following conditions:
(A) If agent 1 announces t1

1 and agent 2 announces t2
2 in stage 1, then agent 1 must be asked

to produce a report including m2 with probability of at least 4/5, i.e.
∑

E∈{(m1,m2),m2}
μ

(
E | t1

1 , t2
2

)
� 4

5
.

Otherwise agent t3
1 will announce t1

1 and get x12 with a probability that exceeds 1/5—giving t3
1

an expected payoff that would exceed her payoff from her equilibrium allocation x3.
(B) If in the first stage agent 1 announces t1

1 and agent 2 announces t1
2 , then agent 1 must be

asked to produce a report including m3 with probability of at least 4/5, i.e.
∑

E∈{(m1,m3),m3}
μ

(
E | t1

1 , t1
2

)
� 4

5
.

Otherwise agent t2
1 will announce t1

1 and get x11 with a probability that exceeds 1/5—giving t2
1

an expected payoff exceeding her payoff from her equilibrium allocation x2.
(C) If agent 1 announces type t1

1 and her true type is t4
1 , then she must be asked to produce a

report including m1 with probability of at least 0.99, i.e.∑
i∈1,2

∑
E∈{(m1,m3),(m1,m2),m1}

μ
(
E | t1

1 , t i2
)
F

(
t i2|t4

1

)
� 0.99.

Otherwise t4
1 will announce t1

1 , since t4
1 will then be able to get a payoff of 200 with probability

of at least 0.01. This will give her an expected payoff exceeding her payoff from her equilibrium
allocation x4.

(A), (B) and (C) imply that:
(D) μ((m1,m3) | t1

1 , t1
2 ) � 0.7. That is, if agent 1 announces t1

1 and agent 2 announces t1
2 , then

agent 1 is asked to report (m1,m3) with probability of at least 0.7. For suppose not. Then by B

agent 1 is asked to produce a report consisting of only m3 with probability of at least 0.1. Then
since p1

2 > 0.4, (C) cannot hold.
(E) μ1((m1,m2)] | t1

1 , t2
2 ) � 0.7. That is, if agent 1 announces t1

1 and agent 2 announces t2
2 ,

then agent 1 is asked to report (m1,m2) with probability of at least 0.7. The proof is similar to
that in (D).

(F) Let us compute the following conditional probabilities for k ∈ {1,4} which will be useful

below: F(t1
2 | tk1 ) = F(t1

2 ,tk1 )

F1(t
k
1 )

= F(tk1 |t1
2 )F (t1

2 )

F1(t
k
1 )

= F(t1
2 ) = p1

2. All equalities here are by definition,

except the second one which holds because F(tk1 |t1
2 ) = F1(t

k
1 ) for k ∈ {1,4}.

The following steps establish the impossibility of implementing f (·) via a Revelation Mech-
anism:
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(i) The probability Prr((m1,m3) | tk1 , t1
1 ) that agent 1 of type tk1 (k ∈ {1,4}) reporting type t1

1
is asked to send (m1,m3) exceeds 0.7p1

2. This follows from F and D.
(ii)

∑
x∈{x11,x12,x2,x3} g

p(x | t4
1 , t1

1 , (m1,m3),φ) � 2
0.7p1

2200
.

Suppose that agent type t4
1 announces t1

1 and sends no verifying messages (i.e. sends φ). By
(i) she is asked to report (m1,m3) with probability exceeding 0.7p1

2. Then her expected payoff
from this deviation is at least

∑
x∈{x11,x12,x2,x3} g

p(x | t4
1 , t1

1 , (m1,m3),φ) × 0.7p1
2 × 200. This

cannot exceed the payoff 2 that type t4
1 gets from her equilibrium allocation x4.

(iii) gp(x | t4
1 , t1

1 , (m1,m3),φ) = gp(x | t1
1 , t1

1 , (m1,m3),φ). This is so because the distribu-
tion of types of agent 2 is the same when the type of agent 1 is either t1

1 or t4
1 .

(iv)
∑

x∈{x0,x4} g
p(x | t1

1 , t1
1 , (m1,m3),φ) � 1 − 2

0.7p1
2×200

= 1 − 1
70p1

2
. This follows from (ii)

and (iii).
(v) Using (iv) we conclude that the expected payoff of type t1

1 who announces her type truth-
fully, is requested to report (m1,m3) but sends no report is at least u1(x0, t

1
1 , tk2 )(1 − 1

70p1
2
) =

1.5(1 − 1
70p1

2
) � 1.5(1 − 1

70×0.4 ) = 1.5×27
28 > 1.4.

(vi) g∗e(x11 | (m1,m3), t
1
1 , t1

1 ) > 0.6.
Since by assumption our mechanism implements f (·), g∗e(x11 | (m1,m3), t

1
1 , t1

1 ) must be
equal to the probability that agent 2 has type t1

2 , given that both agents announce their types
truthfully in stage 1, agent 1 has type t1

1 , and the mechanism requests that agent 1 send (m1,m3)

in stage 3. Therefore, by Bayes’ rule, we have:

g∗e
(
x11 | (m1,m3), t

1
1 , t1

1

) = μ((m1,m3) | t1
1 , t1

2 )p1
2

μ((m1,m3) | t1
1 , t1

2 )p1
2 + μ((m1,m3) | t1

1 , t2
2 )p2

2

.

Since μ((m1,m3) | t1
1 , t1

2 ) � 0.7 by (D), μ((m1,m3) | t1
1 , t2

2 ) � 0.3 by (E), and 0.4 � p1
2 < p2

2 �
0.6, it follows that g∗e(x11|(m1,m3), t

1
1 , t1

1 ) > 0.6.
(vii) Part (vi) implies that the expected payoff of type t1

1 when she announces her type
truthfully, is requested to send (m1,m3) and sends this report does not exceed 1 × g∗e(x11 |
(m1,m3), t

1
1 , t1

1 ) + 2(1 − g∗e(x11 | (m1,m3), t
1
1 , t1

1 )) � 1 × 0.6 + 2 × 0.4 = 1.4.
(viii) In combination, (v) and (vii) imply that when type t1

1 announces her type truthfully
and is requested to report (m1,m3) (which happens at least with probability 0.7), she prefers to
deviate and report nothing rather than (m1,m3), because in the latter case she is assigned either
x0 or x4 with a probability exceeding 27

28 and gets an expected payoff exceeding 1.4.
So, the social choice function f (·) is not implementable.
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