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Abstract

When misrepresenting private information is costly and each type has a different “nat-

ural” least-cost signal or message, the availability of multiple signals has a significant effect

on signalling equilibria and on the set of implementable outcomes in a screening context.

In particular, welfare losses associated with costly signaling disappear as the number of

available signals increases, yet at the same time each type is identified with a high degree

of precision in every equilibrium satisfying a dominance criterion. In the screening context,

we establish conditions under which the principal can implement an arbitrary allocation

profile at a small signal cost. This result helps to explain why employers often prefer

to screen applicants via multiple interviews rather than via menus of contracts. We also

derive an optimal screening mechanism in such a setting. A surprising property of this

mechanism is the absence of exclusion.

JEL Nos: C72, D82, D86

Keywords: costly misrepresentation, multiple signals, screening, signalling, mechanism

design.

∗We thank Editor Dan Bernhardt, two anonymous referees, Yeon Koo Che, Bart Lipman and seminar partic-

ipants at University of Arizona, University of Essex, and University of Missouri-Columbia, and participants at

numerous conferences for helpful comments and suggestions. Sergei Severinov acknowledges financial support

from Social Sciences and Humanities Research Council of Canada through SSHRC grant # 435-2017-0540. The

standard disclaimer applies.
†Department of Economics, University of Wisconsin, Madison, 1180 Observatory Drive, Madison, 53706,

WI, USA. Email: rjdeneck@wisc.edu.
‡Vancouver School of Economics, University of British Columbia, 6000 Iona Drive, Vancouver, V6T 1L4,

BC, Canada; Email: sseverinov@gmail.com.



1 Introduction

In this paper we study mechanism design and signalling in settings where agents incur a cost

of conveying and misrepresenting their private information. These costs may exist for several

reasons. First, the agents may have to take costly and unproductive actions (e.g. excessive

education) in order to signal their types. Second, misrepresenting the truth may require

costly effort to manufacture or conceal evidence that reveals the true state of the world. For

example, in order to obtain a supplier contract or a loan, win a grant or a promotion, a firm

or an individual may need to be perceived as highly productive, successful or creditworthy.

This goal may be attained by taking costly actions to produce “evidence” exaggerating prior

or current performance and concealing the risk of default or non-performance.1 Third, an

individual may find it costly to misrepresent the truth for psychological or ethical reasons.

Our model and results rely on two main assumptions:

• The first-best or least cost signals vary across agent types;

• Agents can send multiple signals or messages.

As we argue below, these two key parts of our approach are natural, well motivated, and

strongly grounded in theory and empirics. In particular, let us highlight the motivation behind

them in the context of the model of signaling via education, one of the prime examples in our

paper. First, driven by intellectual curiosity, taste for knowledge or entertainment value, most

people like to learn, but some people like learning more than others. So, it is natural to envisage

that individuals derive a direct utility from learning, and that this utility is correlated with

ability. As a consequence, each type has a different least-cost level of education. Alternatively,

education may enhance productivity, more so for higher ability individuals. Spence explicitly

recognized the latter possibility in his review of the signaling model (Spence, 2002).

Second, in reality the students’ GPA i.e., an average of all grades, rather than the time

spent in education usually serves as a signal of students’ abilities. We view a grade in each

course as a different signal. Indeed, in each course a student has to complete course-specific

activities, including reading new material, completing assignments, taking tests and exams.

Also, many fields and even subfields have their own analytical apparatus and methods learning

which requires qualitatively new and independent cognitive effort. This motivates our second

main assumption that individuals undergo multiple tests or send multiple messages.

1An example of efforts to manipulate signals involves college admission tests. Educators have long been

concerned that extensive test preparation by the wealthy skew the measurement of underlying student ability.

The College Board recently announced plans to redesign the SAT test to address this (R. Perez-Pena, “Then

and Now: A Test that Aims to Neutralize Advantages of the Privileged,” New York Times, March 15, 2014).
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The major insight of our paper is that the juxtaposition of these two assumptions - the

type-dependence of the least cost messages and the availability of multiple messages- has

powerful consequences. In the signaling context, when the number of available signals becomes

sufficiently large, any perfect Bayesian equilibrium that satisfies a very mild refinement must

be very informative and identify elements in very fine partitions of types. Furthermore, in

such equilibria the sender’s signalling costs become insignificantly small. Plainly, if each signal

corresponds to a grade in a different course, then students who need to take multiple courses to

earn a degree will overinvest in studying only a little bit compared to their “ideal” investment

reflecting their abilities and taste for knowledge. The end result is that a student’s GPA will

reflect his or her natural ability quite accurately and, importantly, the total overinvestment

by each ability type and hence overall inefficiency will be rather small.

These conclusions are important, because ever since Spence’s (1973) seminal contribution,

economists have been concerned with the potential loss of welfare due to signalling. Specifi-

cally, Spence demonstrates that job applicants, engaged in a competitive ‘rat race,’ will spend

too much time and effort on education in order to signal their ability, even though it may not

enhance their productivity. Indeed, the concerns about unproductive competition for grades

have been expressed both by educators and parents.2 Thus, our paper identifies important

conditions under which such rate races does not occur and welfare losses from signaling remain

quite small.

Our results also shed some light on the empirical literature which has tried to document

the existence and magnitude of signalling costs in education, but has had trouble doing so.

Page (2010) concludes that “the number of studies that use convincing empirical strategies to

test the signaling model is short, and the evidence is mixed.” Several other studies, including

Chevalier et. al (2004) , Clark and Martorell (2014), and Arteaga (2017) indicate that the

signaling cost may be quite small. Given the large number of courses taken by modern-day

students in college, our model provides a potential explanation for these findings.

In the screening context, we show that with sufficiently many signals/messages the prin-

cipal can come arbitrarily close to implementing any decision rule and allocation of surplus,

keeping misrepresentation costs arbitrarily small. So, the availability of multiple signals allows

to avoid significant inefficiencies stemming from the agent’s incentive to manipulate private

information and the principal’s desire to limit the agent’s information rents.

This result has practical relevance. It can explain why employers in some industries prefer

to screen job applicants thoroughly via multiple interviews, rather than offer self-selecting

menus of contracts or strong performance incentives. Indeed, the interviewing process in many

2See for example “Crossing the Line: How the Academic Rat Race Is Making Our Kids Sick” by Vicki

Abeles, Huffington Post, May 19 2014, http://www.huffpost.com/entry/education-stress b 5341256.
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professional industries is consistent with the idea of requesting multiple messages or signals

from the candidate. For example, during a departmental visit on the academic job-market a

candidate meets with faculty members working in different fields. Each conversation provides

a somewhat different signal of the candidate’s ability, because different faculty members assess

the candidate from various perspectives and inquire about different aspects of the candidate’s

knowledge. Such interviewing procedures are also used in professional service industries such

as consulting, law or banking. This paper implies that significantly misrepresenting his/her

ability would be too costly for a job-candidate who has to go through a sufficient number of

such interviews or tests. So, the employer will have an accurate estimate of the candidate’s

type, and will not have to offer a powerful incentive scheme on the job.

The result that eliciting multiple messages from the agents is a more cost-effective and

efficient method of screening also applies in other contexts. For example, in a manager-

shareholders relationship a message may correspond to an inspection or an audit. To wit, the

board of directors may carry out several accounting and other audits of a firm. Its managers

would then have to incur the cost of misrepresenting the true state of the world and fudging

the numbers in each audit. Likewise, managers may have to send multiple messages because

they have to communicate and convince different audiences, including shareholders, external

auditors, financial analysts and credit rating agencies, creditors and employees.

To explain the intuition behind our results, note that increasing the number of signals

naturally requires the equilibrium signal cost along a particular signal dimension to fall, at

least on average. However, this does not imply that total signal costs will decrease.3 Thus, the

novel contribution of our paper lies in showing that when the least cost signal differs across

agent types, total equilibrium message/signaling costs will fall as the number of signals grows.

It may be tempting to reason that with many signals, misrepresentation can be easily

prevented by having each agent send only her least cost messages. However, such logic is

fallacious. Indeed, if some type θ sends only her least-cost signals then it will be more costly

for any other type θ′ to mimic θ as the number of signals increases, provided that the least

cost signals differ across agent types and the marginal cost of any particular signal is not too

sensitive to other signals. This simple intuition explains why global incentive constraints get

more relaxed as the number of signals increases. However, crucially it does not apply to local

incentive constraints that involve mimicking infinitesimally close types. This is so because the

marginal cost of misrepresentation is zero at the least cost message, and adding more signals

does not change this fact. So simply asking the agents to send their least cost messages will

never satisfy local incentive constraints, no matter how many signals there are.

Importantly, the literature on signaling and screening shows that local incentive constraints

3This is illustrated in Example 1 in section 2.2 below.
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are the only binding ones in many environments. Connected by the “chains” of local incentive

constraints, “higher” types earn informational rents that depend on the allocations given to all

“lower” types, even though global incentive constraints are non-binding. So, in order to satisfy

local incentive constraints it is necessary to introduce some misrepresentation by almost every

type. Yet, we show that the degree of such misrepresentation can be chosen in such a way

that the desirable allocation profile is implemented while the expected signaling cost becomes

small as the number of signals increases.This happens because a fixed misrepresentation cost,

for any type “buys” smaller and smaller changes in beliefs by the principal as the number

of signals increases. Consequently, the degree of necessary misrepresentation diminishes at a

faster rate than the rate at which the number of messages grows.

The existing literature provides ample motivation for the central assumptions of our paper.

First, our assumption that misrepresenting type is costly and type-dependent is motivated by

considerable empirical and experimental evidence showing that individuals do not lie as often

as warranted by maximizing their material payoffs. In the tax literature, Erard and Feinstein

(1994) report that some taxpayers are willing to bear their full tax burden despite financial

incentives to underreport their incomes. A large body of experimental evidence indicates that

there are intrinsic costs to misrepresentation, which typically depend upon the “size of the

lie.” Abeler, Nosenzo and Raymond (2016) provide a survey of this literature.

The assumption of type dependent least cost signals is ubiquitous in the signaling literature,

spanning a wide range of applications such as limit pricing (Milgrom and Roberts (1982)),

advertising (Bagwell (2007)), oligopoly pricing (Mailath (1989)), dividend signaling (Miller and

Rock (1985)), electoral competition (Banks (1990)), social norms (Bernheim 1994), bequests

(Bernheim and Severinov (2003)) and conspicuous consumption (Ireland (1994)).4

There are also several strands of influential literature on screening that make such assump-

tions. First, there is an extensive literature on certifiable statements or hard evidence whose

availability varies with type, originating in the contributions of Milgrom (1981) and Gross-

man (1981). The extensive literature that flows from these papers (including Seidmann and

Winter (1997), Hagenbach, Koessler and Perez-Richet (2014)) makes the strong assumption

that every type can costlessly send some set of messages which uniquely identify it and which

is not available to any other type. A related branch of literature on mechanism design with

hard evidence is more permissive in its assumptions, requiring only partial verifiability, but

retains the assumption of binary communication cost so that each message is either costless

or infinitely costly for a given type. It explicitly allows for the presentation of multiple pieces

of evidence, as we do. This literature includes Green and Laffont (1986), Lipman and Seppi

4Also, Frankel and Kartik (2019) employ such assumption in their model of signaling two-dimensional private

information via one signal.
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(1995), Forges and Koessler (2005), Bull and Watson (2007), Caillaud and Tirole (2007), De-

neckere and Severinov (2008), Sher and Vohra (2015), Ben Porath and Lipman (2012), and

Hart, Kremer and Perry (2017). A binary communication cost structure also underlies the

literature on honesty (Alger and Ma (2003), Alger and Renault (2006, 2007), Severinov and

Deneckere (2006)) and Kartik et. al (2007).

In contrast, our paper makes the much milder assumption that all types can send any

message available to any other type, but at a cost that is increasing in the magnitude of

type misrepresentation. In this assumption we follow the literature on costly state falsifica-

tion, which originates in the work of Lacker and Weinberg (1989), and includes Maggi and

Rodriguez-Clare (1995), Crocker and Morgan (1998), Crocker and Slemrod (2005), Goldman

and Slezak (2006), and Picard (2013). The costly state falsification literature explores a

wide range of applications, including insurance and tax fraud, financial misreporting, and le-

gal evidence production. In a legal setting, Bull (2008a) studies costly evidence production

and disclosure. Bull (2009) compares inquisitorial and adversarial litigation systems when evi-

dence may be suppressed at a cost. Following scandals such as Enron, managerial misreporting

has attracted significant attention in the accounting and finance literature (see, e.g., Fisher

and Verecchia (2000), Goldman and Slezak (2006), Guttman, Kadan and Kandel (2006) and

Caskey, Nagar and Petacchi (2010)).

Our second main assumption, that individuals undergo multiple tests or send multiple

messages is also well-motivated and recognized, although it has not been studied extensively.

The signaling literature has recognized the availability of multiple signals to convey private

information since its early days (although it was explored formally only by a few authors,

particularly, Engers (1987)). For example, a firm may use price, advertising, warranties, or

brand name to signal the quality of its product. Similarly, the finance literature has considered

a variety of signals conveying the future profitability of a firm, such as financial structure (Ross,

1977), dividend policy (Miller and Rock, 1985), stock splits (McNichols and Dravid, 1990) and

share buybacks. Biologists have pointed out the multi-component nature of signals animals

use to exhibit their quality in courtship, mating or predator deterrence (Johnstone, 1996).

The literature on screening has so far considered only a few environments with multiple

messages. First, multiple pieces of evidence serve as messages in the cited literature on mecha-

nism design with hard evidence. Second, legal scholars have studied the presentation of many

pieces of evidence and multiple rounds of questioning in court (e.g., Emons and Fluet (2009)),

The rest of the paper is organized as follows. In section 2 we study the signaling version of

our model. Section 3 deals with the screening model and optimal mechanisms. Section 4 con-

cludes. The proofs are provided in the Appendix, except for the proofs for section 3.4 which are

relegated to the online Appendix at http : //www.severinov.com/Appendix costlycomm tech.pdf .
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2 Signaling with Multiple Signals

2.1 Model

We begin by describing a signaling version of our model. It has two actors, a sender and a

receiver. The sender first privately observes a realization of a payoff-relevant random variable

θ referred to as the sender’s type. The set of types is an interval [θ, θ]. Reflecting the receiver’s

uncertainty about the sender’s type, we assume that θ is distributed according to a commonly

known distribution function F (.) with a continuous and positive density f(.).

After learning θ, the sender sends n signals mn = (m1, ...,mn) to the uninformed receiver,

where mi belongs to an interval Mi ⊆ R for all i. Having observed mn, the receiver forms

posterior beliefs µ(mn) about θ and responds by choosing an action x ∈ [x, x]. The receiver’s

utility is measured by a function v(x, θ), the properties of which are described below.

The sender’s payoff is given by u(x, θ)−Cn(mn, θ), where u(x, θ) is her utility from action

x and Cn(mn, θ) is the signaling cost. We assume that for each θ there is a message profile

γn(θ) = (γ1(θ), ..., γn(θ)) that uniquely minimizes Cn(mn, θ) i.e.,

Cn(mn, θ) ≥ Cn(γn(θ), θ) for all mn, (1)

with strict inequality whenever mn 6= γn(θ). We also assume that for each n ≥ 1 and any

signal profile mn, Cn+1(mn, γn+1(θ), θ) = Cn(mn, θ). Without loss of generality, we normalize

and assume that Cn(γn(θ), θ) = 0 for all θ.5

Since sending any signal profile other than γn(θ) is costly for type θ, we will henceforth

refer to γn(θ) as type θ’s costless signal profile. The profile γn(θ) can be regarded as “truthful”

for the sender of type θ, as she would select this signal profile if she did not care about affecting

the receiver’s beliefs and action.

Many applications fit this simple model. In particular, the sender and receiver pair could be

a student and an employer, a firm and its regulator(s), a manager and shareholders, an advisor

and a decision-maker, a taxpayer and a tax authority, a bank and a monetary authority, or in

the context of status-seeking and social norms problems, an individual and society.

In the student-employer relationship it is intuitive to think of θ as a measure of the student’s

ability, while signal mi is the grade in the i-th course or performance in the i-th interview,

and the action x is the wage assigned by the employer. In this context, γn(θ) is the profile

of course grades that a student of ability θ would earn if she studied only as much as she

liked and enjoyed, without being concerned about the effect of the grades on the job market

prospects. Alternatively, it could be the student’s natural performance level in an interview.

5A model in which Cn(γn(θ), θ) = k(θ) 6= 0 is equivalent one in which the signal cost and utility function

are given by Ĉ(mn, θ) = Cn(mn, θ)− k(θ) and û(x, θ) = u(x, θ)− k(θ).
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In the manager-shareholder or firm-regulator setting, θ is typically a parameter of the

production cost or demand facing the firm, while mi is the i-th piece of evidence presented by

the manager, such as the firm’s performance characteristic (productivity, capacity utilization),

a measure of demand, an accounting measure or data such as labor costs, results of customer

surveys or audits, while x is manager’s compensations, budget or project assigned to her. Here,

γn(θ) stands for the true measures of the firm’s performance and/or the market conditions.

The assumption that message profile mn s.t. mn 6= γn(θ) is more costly reflects that a manager

can distort the firm’s characteristics and fudge the numbers, but this requires costly effort.

In the bank-monetary authority example θ could represent the quality of the bank’s credit

portfolio, and mi could be a reported characteristic of the bank’s deposit and credit perfor-

mance. In this context, x would denote the scale of the regulatory restrictions imposed by the

monetary authority on the bank’s credit and deposit policies. Similar interpretations apply

to θi,mi, γi(θi) and x in the taxpayer-tax authority framework.

As another example, Bernheim (1994) studies a signaling model of status-seeking and

social norms where the sender is an individual and the receiver is the society at large, and θ

corresponds to the intrinsic preference for individual action, such as preferred style of dress,

so that θ = γ(θ) . The signal corresponds to chosen individual action, while x is the status

conferred on the individual by society. This model is readily extendable to multidimensional

signals, as society observes many distinct aspects of individual behavior, including dressing

style, conspicuous consumption, participation in charitable activities and giving, etc.

Bernheim and Severinov (2003) explore parents’ signaling their preferences to multiple off-

spring via bequest allocation. Parents’ type determines the ideal distribution of their resources

between the children, and could potentially be conveyed via several actions and decisions taken

by the parents.

A common feature of these examples is that each signal involves an action or a choice which

has specific content and, to a certain degree, is independent of the other signals. Therefore,

the effort/cost expended on one signal has a limited effect on the cost of the other signals. Par-

ticularly, in our reexamination of the job-market signaling, the signals are grades in individual

courses in various fields. Taking each course requires performing course-specific activities such

as reading the material, completing assignments and exams. Many fields also have different

apparatus and methods, mastering which requires qualitatively new and independent cogni-

tive effort. For instance, a student majoring in mathematics has to take courses in Analysis,

Geometry, Algebra and other math disciplines, most of which have unique methodologies,

tool sets and approaches. So studying hard in one course does not obviate the need to expend

effort to earn a good grade in another course. Similarly, in a manager-shareholder relation-

ship achieving (or fudging) large cost savings does not make it much easier for a manager to
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demonstrate high quality of the product or favorable customer perception of it.

Accordingly, our assumptions on the signalling cost function below require each signal to be

independent of the other signals to a certain degree, so that increased misrepresentation along

any signal dimension raises the overall signaling costs in a nonnegligible way. This is essential

for our results. However, some interdependence between signals is natural. For example, as

the sender sends more signals, she may learn to misrepresent her information more effectively.

Alternatively, the effort spent generating one signal could fatigue the sender, raising her cost of

misrepresentation in other dimensions. Accordingly, we allow the cost of signal mi to depend

on the other signals, as embodied in the non-separability of the communication cost function

Cn in (m1, ...,mn). Specifically, we make the following assumptions.

Assumption 1 (i) There exists L > 0 s.t. |γi(θ)− γi(θ′)| ≥ L|θ − θ′|, for all i.

(ii) There exists ω > 0 such that Cn(mn, θ)− Cn(γn(θ), θ) ≥ ω||mn − γn(θ)||2.

Assumption 1 (i) requires that the costless signals vary non-trivially with type. In the

signaling model of education it means that students of different ability have different “natural

grades” which they earn by studying only as much as they enjoy. When the signals are

interviews, it says that, without interview preparation, a more able type would come through as

such. In the manager-shareholder or firm-regulator context, it means that firms with different

productivities or demands generate different true performance measures. This assumption is

also natural in Bernheim’s (1994) signaling model of social norms, since his notion of type

coincides with the type’s preferred action and the cost of signaling g(m−θ) increases in |m−θ|.
Assumption 1 (ii) says that message profiles further away from γn(θ) are more costly for

the sender and puts a lower bound on these costs. It reflects the relative independence of

signals sent along different dimensions, although the cost effect of any particular signal may

diminish if there are significant misrepresentations in many other dimensions. Both parts (i)

and (ii) are natural in many contexts. For example, in the absence of uncertainty, it is optimal

for the firms with higher quality products to set higher prices, offer longer warranties, and

advertise more. Similarly, under perfect information, firms with different future investment

opportunities will use different debt structures and dividend policies. In these contexts, a

deviation from optimal policies in either direction is costly.

The receiver’s utility function is denoted by v(x, θ), which we assume to be strictly concave

in x. So for all posterior beliefs µ, the receiver’s best response BR(µ) is unique, where

BR(µ) = arg max
x∈X

∫
v(x, θ)dµ(θ). (2)

Let x∗(θ) denote the receiver’s best response to point beliefs δ(θ) at θ i.e.,

x∗(θ) = arg max
x

v(x, θ) (3)
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We focus on pure strategy perfect Bayesian equilibria. Such an equilibrium is a triple

(m̃n(θ), µ(mn), x̃n(µ)) where m̃n(θ) = (m̃1(θ), ..., m̃n(θ)) denotes the equilibrium signal vec-

tor of type θ, µ(mn) denotes the equilibrium beliefs of the receiver after she receives signal

mn, and x̃n(µ) denotes the unique best response action of the receiver to beliefs µ. Beliefs

µ(mn) are required to satisfy the standard consistency condition with the sender’s equilibrium

signal strategy, and the sender’s signal strategy must maximize her expected payoff given the

receiver’s beliefs.6 Let Un(θ) denote the equilibrium expected utility of type θ. Then we have:

Un(θ) = u(x̃n(µ(m̃n(θ)), θ)− Cn(m̃n(θ), θ). (4)

With a slight abuse of notation, when it does not cause ambiguity, we will let x̃n(θ) denote

the sender’s best response to type θ’s equilibrium signal profile m̃n(θ).

To deal with the problem of multiplicity of equilibria that usually affects signaling games,

we apply the dominance criterion refinement of Cho & Kreps (1987) to eliminate the equilibria

that rely on implausible off-equilibrium beliefs. As it is the weakest refinement known to us,

we have chosen it to make our results as strong as possible.

Specifically, fix some perfect Bayesian equilibrium of our game, and let µ∗(.) be the belief

function and m be an out-of-equilibrium signal profile in this equilibrium. Dominance criterion

specifies the following condition on the admissible principal’s beliefs following m: such beliefs

should put no weight on a type θ if there is a message profile m′ which dominates sending the

message profile m for type θ in the following sense:

min
µ
u(BR(µ), θ)− Cn(m′, θ) > max

µ
u(BR(µ), θ)− Cn(m, θ). (5)

where BR(.) is defined in (2). The inequality (5) says that it is better for type θ to send the

message profile m′ than m, even if the receiver interprets the former in the worst possible

way, and the latter - in the best possible way for the sender. When (5) holds, the dominance

criterion requires the equilibrium belief µ∗(m) following m to put no weight on type θ.7 If an

equilibrium does not satisfy this condition, it is eliminated by the dominance criterion.

2.2 Discussion and Motivating Example

One may wonder whether allowing for multiple signals immediately implies our results. In par-

ticular, it is tempting to argue that misrepresentation can be easily prevented when there are

many signals, as the signaling costs associated with misrepresentation then become sufficiently

large to exceed any potential benefit. However, such logic is fallacious. Indeed, the signalling

6The restriction to pure strategy equilibria is imposed mainly for brevity. Allowing for mixed strategy

equilibria is straightforward, but requires somewhat more cumbersome notation.
7An exception to this rule occurs if m is dominated for all θ. Then the receiver can hold any belief µ(m).
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costs necessary to prevent misrepresentation may very well be invariant to the dimension of

the signal space, as illustrated in the following simple example.

Example 1. Suppose that a sender (such as a job-applicant in education signalling model)

has type θ. She sends n signals (m1, ...,mn) (perhaps reflecting grades obtained in differ-

ent courses) at cost
∑n

i=1
mαi
θ , where α > 0, and then receives the payoff v(µ(m1, ...,mn)),

where µ(m1, ...,mn) is the receiver’s beliefs about the sender’s type given the signal profile

(m1, ...,mn). It is immediate that for any equilibrium (µ∗(m1, ...,mn),m1(θ), ...,mn(θ)) of

the model with n signals, there is an equilibrium of the model with a single signal m in

which type θ sends signal m̂(θ) = (
∑n

i=1mi(θ)
α)

1
α and the receiver forms beliefs µ̂(.) s.t.

µ̂(m) = µ∗(m1, ...,mn) where (m1, ...,mn) is any message profile satisfying m = (
∑n

i=1m
α
i )

1
α .

In this equilibrium, the sender incurs the same signaling cost and obtains the same payoff as

in the model with n signals.

What is key in this example is not the additivity of the signal cost function, but rather

that the lowest cost message is the same (zero) for all sender types. This ultimately implies

that the total cost for any one type of a signal profile preventing mimicking of that type by

another type is invariant to the number of signals. So, increasing the number of signals induces

the sender to send a less costly signal in each dimension, yet results in the same equilibrium

allocation (i.e., wage) and signaling cost as in the environment with one signal.

Our basic insight is that increasing the dimension of the signal space has an effect if the

least cost signal varies non-trivially with the agent’s type. This is illustrated by the following

example where any type’s signaling cost decreases as the number of signals grows.

Example 2. Consider the following modified version of Spence’s education model. A

worker can produce q units of output at cost q2

2 which provides benefit θq to the employer,

where θ ∈ [0, 1] is the worker’s type privately known by her and distributed according to F (θ).

The worker’s utility function is given by u(q, t, θ) = t − q2

2 , and the employer’s net benefit is

v(q, t, θ) = θq − t, where t is the employer’s transfer to the worker.

The worker obtains education before entering the job-market. The observable characteris-

tic of education is a profile of grades mn = (m1, ...,mn), with mi ≥ 0 standing for the worker’s

grade in course i. Education is not productive, but carries a type-dependent cost given by

Cn(mn, θ) =
1

2

n∑
i=1

(mi − θ)2. (6)

The employment market is competitive, so that the worker’s net utility before education costs

is equal to the expected social surplus maxq Eµ(θq − q2

2 ), where µ is the employer’s beliefs

about the worker’s type θ.

In a separating equilibrium with equilibrium signalling strategy m̃n(θ), the beliefs on the

equilibrium path are degenerate, i.e. µ(m̃n(θ)) = δ(θ). The competitive markets assumption
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implies that the quantity allocation in a separating equilibrium must be the first-best, i.e.

q̃(θ) = arg maxq

(
θq − q2

2

)
= θ, and that the worker receives all surplus, so that t(θ) =

q̃(θ)θ = θ2. Also, because of the symmetry in the signal cost function, all equilibrium grades

are the same, i.e. m̃i(θ) = m̃(θ) for all i = 1, ..., n. Using the latter property and q(θ) = θ for

all θ, the following incentive constraints have to hold for every pair (θ, θ′):

Un(θ) ≡ θ2

2
− n

2
(m̃(θ)− θ)2 ≥ 1

2

(
θ′
)2 − n

2
(m̃(θ′)− θ)2 (7)

Thus the right-hand side of (7) is maximized at θ′ = θ, producing the first-order condition

θ − n(m̃(θ)− θ)dm̃dθ = 0, which admits a solution

m̃(θ) = (1 + s)θ, where s =
1

2

(√
1 +

4

n
− 1

)
. (8)

Using (8) on the right-hand side of (7) confirms that the payoff that type θ gets by imitating

type θ′ is concave in θ′. So this signaling strategy, indeed, sustains a separating equilibrium.

To survive the dominance criterion, the beliefs following an off equilibrium message profile

m must satisfy Eµ(m)

n∑
i=1

(mi − θ)2 ≤ 2.8 So, to support our equilibrium we can utilize the

following off-equilibrium point beliefs: µ(m) = δ(θ′), where θ′ is the lowest type θ ∈ [0, 1] s.t.∑
i(mi − θ)2 ≤ 2 and µ(mn) = δ(1) if the last inequality fails for all θ ∈ [0, 1].

The worker’s equilibrium signaling cost is given by:

n

2
(m̃(θ)− θ)2 =

n

2
s2θ2 =

θ2

8

[√
n+ 4−

√
n
]2

(9)

It is easily verified from (8) and (9), correspondingly, that the misrepresentation in each

message and equilibrium signaling cost monotonically decrease to zero with the number of

signals. To see how quickly signaling costs decrease, Table 1 expresses the ratio of equilibrium

net utility to the first-best surplus SFB(θ) = θ2

2 as a function of n:

Table 1.

n 1 2 3 4 5 6 7 8 9 10

Cn(mn, θ)/SFB(θ) 38% 27% 21% 17% 15% 13% 11% 10% 9% 8%

8An off equilibrium signal profile m is not dominated for type θ iff for every message profile m′ we have:.

1− 1

2
Eµ(m)

n∑
i=1

(mi − θ)2 ≥ 0− 1

2

n∑
i=1

(m′i − θ)2

Since the right-hand side of this inequality is maximized at m′i = θ for all i, the beliefs must be concentrated

on θ for which
∑
i(mi − θ)2 ≤ 2. If this set is empty, no type can ever gain by sending the signal profile m,

and we may set µ(m) = δ(1). It is easy to show that these beliefs support the separating outcome.

12



Recall that, besides the signalling costs, the equilibrium allocation is the same as the first-best

one. So, Table 1 indicates that signalling costs fall off and the loss of surplus diminishes quite

fast as the number of signals increases.

2.3 The Main Result for the Signalling Model

Our main result for the signalling model is presented in the following Theorem.

Theorem 1 There exists K <∞ such that in every PBE satisfying the dominance criterion

supp.(µ(m̃n(θ))) ⊂ [θ − K√
n

, θ + K√
n

] , |x̃n(θ)− x∗(θ)| ≤ K√
n

, Cn(m̃n(θ), θ) ≤ K√
n

for all θ.

Thus as n increases, for any type θ: (i) the support of the beliefs given any equilibrium

signal profile m̃n(θ) collapses to the point θ; (ii) the equilibrium action x̃n(θ) converges to the

principal’s first-best action; (iii) the equilibrium signaling cost Cn(m̃n(θ), θ) converges to zero.

According to Theorem 1 To understand the intuition behind this Theorem, let us first think

of the model with a single signal and focus on its least-cost (Riley) separating equilibrium,

which exists under simple conditions on u(.) and C(.) such as single-crossing. Let m∗1(θ)

denote type θ’s equilibrium signal. Then C(m∗1(θ), θ) is positive and nonnegligible for almost

every type θ.

Now let us introduce a second signal, and suppose that the sender selects his least cost

message as a second signal, while keeping his first signal unchanged. Then each type’s signal

cost will remain unchanged. But since γ2(θ′) 6= γ2(θ) the cost to imitating type θ will increase

for every other type θ′. So, this extra signal relaxes global incentive constraints.

More significantly, the message profile (m∗1(θ), γ2(θ)) also satisfies local incentive con-

straints, which are the binding ones in a separating equilibrium. To see this, note that

local incentive constraints in a separating equilibrium are characterized by the following

first-order condition obtained by differentiating the receiver’s equilibrium payoff function

u(x∗(θ̂), θ)− Cn(m∗(θ̂), θ)|θ̂=θ with respect to θ̂:

ux(x∗(θ), θ)
dx∗

dθ
=

n∑
i=1

∂Cn

∂mi
(m∗(θ), θ)

dm∗i
dθ

. (10)

Importantly, ∂C2

∂m2
(m∗1(θ), γ2(θ)) = 0 since γ2(θ) is type θ’s least cost signal, while the iden-

tity C2(m, γ2(θ), θ) = C1(m, θ) implies that ∂C2

∂m1
(m, γ2(θ), θ) = ∂C1

∂m1
(m, θ). Thus (m∗1(θ), γ2(θ))

satisfies the first-order condition (10), because m∗1(θ) satisfies it with n = 1. So (m∗1(θ), γ2(θ))

is an equilibrium signal profile with n = 2. In fact, no matter how many extra signal dimen-

sions we introduce, the signal profile (m∗1(θ), γn−1(θ)) continues to be an equilibrium profile

carrying the same message cost for all n.

13



However, the dominance criterion eliminates such equilibria as unreasonable. Indeed,

suppose that n is large and instead of sending the above signal profile, the sender deviates and

sends the profile γn(θ) instead. Since this signal profile is prohibitively costly for a type θ′

outside a small neighborhood of θ, the dominance criterion requires that the receiver’s beliefs

following γn(θ) be concentrated on such small neighborhood. As a consequence, type θ can

earn approximately u(x∗(θ), θ) at zero cost, thereby breaking the above equilibrium.

Theorem 1 establishes that a similar logic applies to all equilibria. The argument in the

previous paragraph shows that separating equilibria with a non-negligible signaling cost do

not survive the dominance criterion. Further, if an equilibrium with a large n contained a

pooling interval of a significant size, then the pooling signal profile will be prohibitively costly

to a type at one of the endpoints of this interval. So any equilibrium surviving the dominance

criterion for large n must be approximately revealing and have small signalling cost.

To see how one can construct equilibria surviving the dominance criterion, recall that at

the signal profile (m∗1(θ), γ2(θ)) the cost of imitating type θ is larger than the cost of sending

a single message m∗1(θ) for any type θ′. Further, we can simultaneously lower |m2
1(θ)− γ1(θ)|

and raise |m2
2(θ)− γ2(θ)| while preserving the local incentive constraints (10). As a result of

this change, the signalling cost of type θ will decrease because the first-order effect of raising

m2
2(θ) around γ2(θ) on θ’s cost is negligible, while bringing m2

1(θ) closer to γ1(θ) has the

first-order effect of lowering θ1’s cost.

Some degree of misrepresentation persists, as the marginal cost of misrepresentation is zero

at any type’s costless signal profile. However, the signaling costs must vanish as n becomes

large because, as shown above, the equilibrium allocation converges to the fully revealing one,

x∗(θ), and the dominance criterion implies that the agent-type θ can ensure almost the same

allocation by repeatedly sending her costless message.

In the context of job-market signaling, Theorem 1 implies that a student of every ability

gets grades that are very close to her “natural” ones. Significantly, the fact that the overall

signalling costs go to zero means that there is no unproductive and exhausting ‘rat race’

between students trying to achieve better grades in order to obtain higher-paying jobs. This

conclusion has significant implication and policy prescriptions for the design of educational

programs and degree requirements. Indeed, negative welfare consequences of competition for

grades between students have motivated several Business schools, including Wharton, Chicago,

Stanford and Berkeley to adopt grade non-disclosure policies which prohibit students from

revealing grades to recruiters. Our results provide a different perspective and a prescription

for dealing with this problem. Specifically, we argue that effort overinvestment can be avoided

if educational programs are constructed of a larger number of more distinct courses. An

important element of such design is relative independence and non-overlap of material between

14



courses, making the performance in each course a separate and sufficiently independent signal.

2.4 Signaling and Endogenous Size of the Signal Space

In some contexts, signals are a natural part of the economic environment, and their presence

by itself does not require any additional cost. For example, this is the case when a firm has

unobservable product quality: it must select its price, advertising, warranty, financing options,

return policy, service time, etc., and all these decisions have a signaling content. However,

these characteristics must also be chosen if the firm’s quality were known.

In other contexts, there may be fixed costs associated with setting up each signal, such as

a test or an interview. For example, offering new courses requires colleges to incur additional

expenses associated with their development and administration. Such costs may then endoge-

nously limit the number of available signals. To illustrate, let G denote per student fixed cost

of a course. The socially optimal number of courses n∗ then maximizes per capita expected

benefit EUn(θ)− nG = E(u(x∗(θ), θ)− Cn(mn(θ), θ))− nG. For the example of Section 2.2,

Table shows how n∗ and the expected surplus obtained by a student varies with per capita

fixed cost expressed as a percentage of expected first-best surplus, G/ESFB(θ).

Table 2.

G/ESFB(θ) 17% 7.5% 4.5% 3.0% 2.2% 1.6% 1.3% 1.0% 0.85% .7%

n∗ 1 2 3 4 5 6 7 8 9 10
EUn(θ)−nG
ESFB(θ)

45% 58% 65.5% 71% 74% 77.4% 79.9% 82% 83.35% 85%

Thus if the fixed cost is 1% of the first-best surplus, eight courses are optimal. If students

bore all of the fixed cost, then they would receive 82% of the first-best surplus. Arguably, in

most cases per capita fixed cost of each course is significantly less than 1% of the first-best

surplus, implying that optimal education programs need to include more than 10 courses.

2.5 One-Sided Signal Costs

So far, we have assumed that each sender type has a unique costless signal, and sending

either higher or lower signals is costly. This assumption is natural in many applications, such

as signaling quality by price, advertising and warranties. However, in some applications, it is

costless for a sender of type θ to send any signal below γi(θ). For example, in earning grades or

performing on job interviews, it is often easy for a student to pretend to be less capable than her

natural level γi (θ).9 In this case, the cost function satisfies Cn(mi,m
n
−i, θ) = Cn(γi(θ),m

n
−i, θ)

if mi ≤ γi(θ). In particular, if mn ≤ γn(θ) then Cn(mn, θ) = 0. For all other signal profiles

9We thank an anonymous referee for suggesting this line of inquiry.
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we maintain Assumption 1, so we have Cn(mn, θ)−Cn(γn(θ), θ) ≥ α
∑n

i max{mi−γi(θ), 0}2.

We will refer to such cost functions as “one-sided.”

Naturally, informative signaling is only possible in this case if the sender’s desired direction

of imitation is to exaggerate one’s type. To ensure this, we make the following assumptions:

Assumption 2 (i) vθx(x, θ) > 0 for all (x, θ); (ii) ux(x∗(θ′), θ) > 0 for all θ′ ≤ θ.

Assumption 2(i) guarantees that higher beliefs induce higher receiver responses. Assump-

tion 2(ii) then implies that every type prefers to be perceived as a higher type. It is then

natural to consider monotone perfect Bayesian equilibria in which the sender’s equilibrium

signal profile is increasing in θ, i.e. m̃n(θ′) ≥ m̃n(θ) whenever θ′ > θ. We then have the

following analogue of Theorem 1:

Theorem 2 Consider monotone perfect Bayesian equilibria satisfying the dominance crite-

rion. Then as n increases, the support of the beliefs following equilibrium signal profile m̃n(θ)

for any θ collapses to the point θ, so the equilibrium action x̃n(θ) converges to the fully re-

vealing one, x∗(θ), and signal costs Cn(m̃n(θ), θ) converge to zero for any θ.

As an illustration, consider the one-sided cost version of the example from Section 2.2.2.

The corresponding one-sided signal cost function is Cn(m1, ...,mn, θ) = 1
2

∑
i max{mi−θ, 0}2.

Then it is still an equilibrium for the worker of type θ to send a signal m̃i(θ) = 1
2

(√
1 + 4

n + 1
)
θ

in each dimension (which can be interpreted as a grade in each course). Intuitively, this is

because with each type sending signals above γi(θ), the local incentive constraints under one-

sided and two-sided signal costs are identical. ff equilibrium point beliefs that survive the

dominance criterion and support the separating outcome are the same as in Section 2.2.2.

The importance of Theorem 2 lies in establishing the robustness of the convergence of

equilibria to a perfectly revealing outcome with negligible signalling costs as the number of

signals increases under a broader set of cost conditions. In particular, a one-sided cost function

reflects a realistic scenario when it is only costly to exaggerate one’s type and perform better

than at the natural level, and it is important to know that our main results survive in this case.

3 Screening with Multiple Messages

In this section, we study a screening version of our model and show that the main conclusions of

the signaling model also apply in the screening context. In addition, we investigate the optimal

mechanism with an exogenously fixed and an endogenously chosen number of messages.

To set up the model, suppose that the principal controls the allocation (q, t) which consists

of a production/consumption decision q ∈ R+ and a monetary transfer t. The agent of type θ
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obtains utility t−h(q, θ) and the principal obtains utility v(q)− t, where v(q) ≥ 0, h(q, θ) ≥ 0

and h(0, θ) = 0 for all θ, with v(.) and h(.) twice continuously differentiable. An intuitive

interpretation is that the agent produces quantity q at a cost h(q, θ), and the principal gets

benefit v(q) from this quantity. The type θ is randomly drawn according to the distribution

function F (θ) with support Θ = [θ, θ]. The agent has an outside option that yields zero utility.

To this standard screening environment we add a costly signal/message process. 10 Specif-

ically, as in the previous section, when sending a vector of messages mn = (m1, ...,mn) the

agent of type θ incurs the cost Cn(mn, θ), where Cn(.) is a twice continuously differentiable

function with type-dependent “least-cost” signal profile denoted by γn(θ). The agent’s net

payoff is thus given by t− h(q, θ)− Cn(m1, ...,mn, θ).

By the Revelation Principle, a mechanism offered by the principal can without loss of

generality be represented by a mapping (mn(.), q(.), t(.)) from the agent’s type space into the

space of allocations. One can think of a mechanism as a menu of options {mn(θ), q(θ), t(θ)}θ∈Θ

offered to the agent. An allocation includes messages because the latter are payoff-relevant and

can be also thought of as the agent’s actions. The part of allocation (q(θ), t(θ)) is implemented

after the agent sends message profile mn(θ).11 Without loss of generality, we can assume that

after an off-equilibrium vector of signals mn s.t. mn 6= mn(θ) for any θ, the principal assigns

(q, t) = (0, 0).

We will say that an allocation profile (mn(.), q(.), t(.)) is implementable if the following

incentive constraints hold for all θ, θ′:

U(θ) = t(θ)− h(q(θ), θ)− Cn(mn(θ), θ) ≥ max
θ′∈Θ

t(θ′)− h(q(θ′), θ)− C(mn(θ′), θ), (11)

Individual rationality requires that U(θ) ≥ 0.

The following example illustrates the main result of this section demonstrating that the

principal can implement the first-best allocation profile and obtain almost all surplus, keeping

the signaling cost arbitrarily small when the number of messages is large.

Example 3. The agent supplies output q ∈ R+ to the principal in exchange for a payment

t ∈ R+. Output q generates surplus S(q) = q − q2

2 for the principal, so her net payoff is:

S(q)− t = q − q2

2
− t.

The agent’s type θ ∈ [0, 1] is her constant marginal cost of production. She can submit a

10Both terms “signal” and “message” are appropriate here in the screening settings as they refers to agent’s

actions which possess only informational content.
11Another way to think of a mechanism formally is as follows. The agent sends a type report θ̂ and then the

principal recommends a profile of costly signal mn(θ̂) and assigns the allocation (q(θ̂), t(θ̂)).

17



profile of messages (m1, ...,mn) about her marginal cost incurring the misrepresentation cost

Cn(m1, ...,mn, θ) =
1

2

n∑
i=1

(mi − θ)2

Thus the agent’s net utility is given by:

t− θq − Cn(m1, ...,mn, θ) = t− θq − 1

2

n∑
i=1

(mi − θ)2 (12)

The principal’s first-best allocation, which she would implement if she knew the agent’s

marginal cost, involves output qFB(θ) = 1−θ maximizing the social surplus q− q2

2 −θq, and a

transfer to the agent tFB(θ) = θ(1− θ), which leaves the agent at the reservation utility zero.

The mechanism which the principal offers to the agent can be represented as profile

(m1(θ), ...,mn(θ), q(θ), t(θ)). Let us show how the principal can choose (m1(θ), ...,mn(θ) to

implement q(.) = qFB(.) so that the misrepresentation cost Cn(mn(θ), θ) becomes arbitrarily

small when n becomes large, and all agent types are kept at their reservation utility level 0.

With q(.) = qFB(.), incentive compatibility condition and the condition that each agent-

type’s net utility is zero can be written as follows:

0 = Un(θ) ≡ tn(θ)−θqFB(θ)−1

2

n∑
i=1

(mi(θ)−θ)2 = max
θ′

{
tn(θ′)− θqFB(θ′)− 1

2

n∑
i=1

(mi(θ
′)− θ)2

}
(13)

Applying the Envelope Theorem yields the following necessary condition for (13) to hold:

0 = U ′(θ) = −qFB(θ) +
n∑
i=1

(mi(θ)− θ) (14)

Using (14) and choosing the same message in very dimension yields mi(θ) = θ + qFB(θ)
n =

θ + 1−θ
n . So, equilibrium messages/signals become less distorted and converge to the costless

signal as this number increases, while the associated communication costs converges to zero:

Cn(m1(θ), ...,mn(θ), θ) =
1

2

n∑
i=1

(mi(θ)− θ)2 =
n

2
(mi(θ)− θ)2 =

(1− θ)2

2n
.

Under our message profile (m1(θ), ...,mn(θ), the transfer function tn(θ) satisfying Un(θ) = 0

is tn(θ) = θqFB(θ) + 1
2

n∑
i=1

(mi(θ) − θ)2 = (1 − θ)
(
θ + 1−θ

2n

)
, and by (13) the payoff of type θ

when imitating θ′ is given by:

(1− θ′)
(
θ′ +

1− θ′

2n

)
− θ(1− θ′)− n

2

(
θ′ +

1− θ′

n
− θ
)2

, (15)
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It is easy to check that (15) is concave in θ′ and its derivative with respect to θ is equal to zero

at θ′ = θ. So out contract satisfies the agent’s incentive constraints. In our more general case,

such concavity is not guaranteed. Nevertheless, we show that the same result holds under

simple technical assumptions on the communication cost function.

3.1 Main Result for the Screening Model

To deliver our main result, we need the following Assumption regarding the communication

cost function Cn(mn, θ):

Assumption 3 There exist constants L, ω1, ω2 > 0 :

(i) |γi(θ)− γi(θ′)| ≥ L |θ − θ′|, for all i;

(ii) ω1||mn − γn(θ)||2 ≤ Cn(mn, θ) ≤ ω2||mn − γn(θ)||2;

(iii) Cnθmi(m
n, θ) ≤ −ω1 for all i and (mn, θ);

(iv) Cnθθ(m
n, θ) ≥ ω1n whenever ||mn − γn(θ)|| ≤ ω1.

Part (i) and the first inequality in part (ii) of Assumption 3 carry over from the signaling

context and explained there. In particular, the latter reflects that signals sent along differ-

ent dimensions are relatively independent of each other, although the size of this effect may

diminish if there are significant misrepresentations in many other dimensions.

The second inequality in Assumption 3 (ii) is rather innocuous, as it only requires Cn(·, θ)
to be majorized by a quadratic function centered around γn(θ). Assumption 3(iii) requires

Cn(mn, θ) to have increasing differences in (mn, θ), and is used to establish the existence

and uniqueness of a message profile that satisfies local incentive constraints. Assumption

3(iv) requires Cn to be convex in θ in a neighborhood of (γn(θ), θ), to a degree that grows

with n. In fact, it is just a continuity requirement, since other parts of Assumption 3 imply

Cnθθ(γ
n(θ), θ) ≥ ω1n. These assumptions are easily satisfied by most common specifications of

the cost function and, in particular, by the cost function Cn(mn, θ) = 1
2

∑n
i=1 (mi − θ)2.

The main Theorem for the screening model is presented in the following Theorem:

Theorem 3 Suppose Assumption 3 holds. Let (q(·), t(·)) be any pair of twice continuously

differentiable quantity and transfer functions such that U(θ) ≡ t(θ)− h(q(θ), θ) ≥ 0 for all θ.

Then there exist N such that whenever the number of signals n exceeds N , there are transfer

and message functions, tn(·) and mn(·) s.t. the mechanism (mn(·), q(·), tn(·)) is incentive

compatible and satisfies U(θ) = tn(θ)−h(q(θ), θ)−Cn(mn(θ), θ), with the signal cost satisfying

Cn(mn(θ), θ) < 1
n for all θ.

Theorem 3 establishes that the set of implementable allocation profiles grows as the number

of signals increases, because adding extra signals allows to satisfy incentive constraints which
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do not hold in the profile (q(·), U(·)) which we wish to implement. Naturally, the larger is

the extent to which some incentive constraints are violated in the absence of costly messages,

the higher is the number of costly messages required to ensure that these constraints hold

in the presence of misrepresentation costs. Significantly, the magnitude of communication

costs decrease quickly with the number of messages n, at the rate 1
n . Since by construction

tn(θ) = t(θ) +Cn(mn(θ), θ) ≤ t(θ) + 1
n , the principal’s payoff in mechanism (mn(·), q(·), tn(·))

differs from her payoff under (q(·), t(·)) by at most 1
n . Thus, the principal can extract (almost)

all surplus when the number of messages is large.

To see why any profile (q(·), U(.)) becomes implementable for sufficiently high n, observe

first that large deviations from the associated signal profile mn(.) do not pay for any type θ,

because such deviations become prohibitively costly, as assured by Assumptions 3(i)- (ii).

Small deviations from mn(.) are not so easily deterred, however, because they necessarily

involve small signal costs, even when the dimension of the signal space is large. More specifi-

cally, note that implementing an allocation profile q(·) together with agent’s surplus function

U(·) requires the following (local) envelope condition to hold:

U ′(θ) = −hθ(q(θ), θ)− Cnθ (mn(θ), θ). (16)

Condition (16), which is a counterpart of condition (10) for the signaling model, implies that

(q(·), U(.)) determines the slope of the signal cost function, Cnθ (mn(θ), θ). Assumption 3 (iii)

ensures that there exists mn(θ) satisfying (16), and this mn(θ) converges uniformly to γn(θ)

as the number of signals increases. The second inequality in Assumption 3(ii) ensures that

the corresponding cost Cn(mn(θ), θ) converges to zero. Assumption 3 (iv) implies that for

large n the agent’s payoff function becomes strictly concave in signals mn on a neighborhood

of (γn(θ), θ), thereby guaranteeing that sending mn(θ) is a local optimum.

The result of Theorem 3 is of economic significance. Particularly, it suggests that an

optimal method of dealing with the problem of asymmetric information regarding employees’

abilities may involve the design of testing and interviewing procedures, rather than on-the-job

screening via incentive schemes. This can explain why incentive schemes offered in a variety

of industries are not as steep and high-powered as incentive literature may suggest.

It also provides an explanation why the job interview process has steadily become length-

ier and more complex. Indeed, in most professional industries nowadays this process involves

several rounds of interviews.12 The employers use a variety of techniques, including situa-

tional, behavioral, case, stress, technical and panel interviews. All of these techniques and

12For anecdotal evidence see e.g. Sue Shellenbarger “How to Deal With a Long Hiring Process: Getting

a Job Takes Longer Than Ever ...,” Wall Street Journal, Jan. 19, 2016. In “Death by Interview: Revealing

the Pain Caused by Excessive Interviews (ERE Recruiting Intelligence, May 2013), John Sullivan reports that

“a well-known technology firm ... dictated that every candidate undergo 17 interviews.”In 2014, at Google

“people sat for 15 to 25 interviews” (T. Popomaronis, “Here’s How Many Google Interviews it Takes to Hire a
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methods allow to assess a candidate’s ability from different perspectives and make the signals

obtained through different interviews to a large extent independent of each other. Some of

this complexity is undoubtedly due to the principal’s desire to reveal multiple dimensions of

ability, but much of it is geared towards making it difficult for candidates to exaggerate their

capabilities and misrepresent their skills.

Similarly, industry observers have documented that the number of reports, surveys, audits,

etc. that managers and firms need to provide to shareholders, auditors, boards, institutional

investors and regulators has been steadily increasing. For example, a comprehensive Ernst and

Young survey reports that “... companies face increasing demands on reporting, driven by both

internal and external stakeholders. The number of reports companies issue is growing, and

reporting is expanding to include more financial and non-financial aspects.”13 According to the

theory developed in this paper, costliness of the misrepresentation in these submissions benefits

the stakeholders by making the eliciting of information and the allocation more efficient.

3.2 Screening with One-sided Cost of Misrepresentation

As in the signaling part of the paper, in this subsection we extend our model to a set-up where

only one direction of misrepresentation is costly. For example, in a procurement or regulation

setting a firm may be able to understate its cost of production at will without any difficulty,

simply by omitting to include some inputs in its costs. However, cost padding requires effort

and time to generate additional invoices, change databases, etc.

Accordingly, assume that Cn(mi,m−i, θ) = Cn(γi(θ),m−i, θ) for any mi < γi(θ), implying

in particular that Cn(mn, θ) = Cn(γn(θ), θ) = 0 whenever mn ≤ γn(θ). We will say that such

a signal cost function is “one-sided.”14

We maintain Assumption 3 on Cn(mn, θ) with the appropriate modification replacing the

difference ||mn−γn(θ)|| with ||(mn∨γn(θ))−γn(θ)|| , where mn∨γn(θ) is the coordinate-wise

maximum of mn and γn(θ), in parts (ii) and (iv) of the Assumption.

In this case, the scope of implementability is more restrictive. However, under additional

assumption we can extend the result of Theorem 3 as follows.

Theorem 4 Suppose that the signal cost function Cn(m, θ) is one-sided. Also, suppose that

hq(q, θ) > 0, and hqθ(q, θ) > 0.

Googler,” CNBC “Make It,” April 17 2019).
13“Connected Reporting: Responding to Complexity and Rising Stakeholder Demands,” Ernst and Young

FAAS group, 2014, p. 8.
14A model in which an agent can send any lower messages/evidence for free but is not able to exaggerate

available evidence is studied by Rappoport (2017) . His analysis focuses of a different set of problems, and in

particular, studies how the equilibrium rules of inference change with evidence structure.
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Then the result of Theorem 3 holds for every pair of twice continuously differentiable

functions (q, t) such that q′(θ) ≤ 0 and t′(θ)− hq(q(θ), θ)q′(θ) ≥ 0 for all θ.

With one-sided signal costs, it becomes impossible to implement an allocation rule q(θ)

with surplus function U(θ) = t(θ)− h(q(θ), θ) that generate incentives to deviate downwards.

Preventing such deviations would require messages mn that are more costly for higher types

than for lower types, but such messages are not available under one-sided communication cost.

The assumption t′(θ)− hq(q(θ), θ)q′(θ) ≥ 0 rules out local incentives to deviate downwards.

Furthermore, we also need to impose the monotonicity condition q′(θ) ≤ 0, which is stan-

dard in incentive problems. It becomes necessary because global incentive constraints in the

downward direction cannot be ensured by the communication costs alone, since higher types

can imitate lower types for free under one-sided communication costs.

However, one-sided communication costs still help to satisfy the upwards incentive con-

straints, and this direction of imitation is typically the more important one. Indeed, in the

set-up of this section it is most natural to interpret θ as a production cost parameter, with

higher θ corresponding to a higher marginal cost. The lower-cost types wish to imitate higher

cost types, and the one-sided signal costs allow these incentive constraints to be satisfied with a

minimal loss of efficiency when the number of messages is large. In fact, one-sided signal costs

are sufficient for implementation of the optimal mechanisms considered in the next section.

3.3 Optimal Mechanism

In this section, we characterize the optimal mechanism maximizing the principal’s expected

payoff with a given number of messages n. Theorem 3 says that ultimately with a large n,

the principal can extract full first-best surplus. But when the number of messages is limited,

optimal mechanism design is an important issue.

In this analysis, we need some additional assumptions. First, we assume that the payoff

functions v(q) and h(q, θ) are twice continuously differentiable with v(0) = h(0, θ) = 0, hqθ > 0,

vqq − hqq < 0, hθ ≥ 0 for all q and θ. Second, we assume that vq(0) − hq(0, θ) = 0 and

limq→∞ vq(0)−hq(0, θ) < 0. These assumptions guarantee that the first-best quantity qFB(θ)

maximizing social surplus v(q)− h(q, θ) is unique, finite and decreasing, with qFB(θ) = 0.

We also make the following monotonicity assumptions:

Assumption 4 (i) v(q)− h(q, θ)− F (θ)
f(θ) hθ(q, θ) has strictly decreasing differences in (q, θ);

(ii) Cn(mn, θ)+ F (θ)
f(θ)C

n
θ (mn, θ) is submodular in mn and has strictly decreasing differences

in (mn, θ);

(iii) Cn(mn, θ) is submodular in mn and has strictly decreasing differences in (mn, θ).
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It is well-known that under Assumption 4(i) in the optimal mechanism with no costly

signals the principal selects second best quantity qSB(θ) maximizing the ‘virtual’ surplus

Γ(q, θ) ≡ v(q)− h(q, θ)− F (θ)

f(θ)
hθ(q, θ). (17)

Assumption 4(i) implies that qSB(θ) is strictly decreasing in θ whenever it is nonzero. Let

θ∗ ∈ (θ, θ̄) be the unique solution to Γq(0, θ) = 0.15 Then qSB(θ) > 0 if and only if θ ∈ [θ, θ∗).

Thus, it is optimal for the principal to exclude all types in [θ∗, θ], which is socially inefficient.

For example, higher-cost firms are excluded from production in a procurement setting.

Next, suppose that n > 0. Since the signals are now a part of an allocation, it is tempting

to conjecture that an optimal mechanism maximizes augmented virtual surplus:

Λn(q,mn, θ) = v(q)− h(q, θ)− F (θ)

f(θ)
hθ(q, θ)−

[
Cn(mn, θ) +

F (θ)

f(θ)
Cnθ (mn, θ)

]
(18)

To maximize (18) the principal would select the second best quantity qSB(θ) and a “second

best” signal function mn
SB(θ) that minimizes the virtual cost Cn(mn, θ)+ F (θ)

f(θ)C
n
θ (mn, θ). The

agent’s information rent in this mechanism is:

UnSB(θ) = UnSB(θ) +

∫ θ

θ
[hθ(qSB(t), t) + Cnθ (mn

SB(t), t)] dt. (19)

Assumption 4(ii) implies that mn
SB(θ) is strictly increasing in θ, with mn

SB(θ) > γn(θ), and

hence Cθ(m
n
SB(θ), θ) < 0 for all θ ∈ (θ, θ]. So, it is apparent from (19) that costly signals

generate an incentive for the agent to understate her type. This incentive offsets the agent’s

incentive to overstate her type arising because hθ(q, θ) > 0, resulting in a decrease of the agent’s

information rents. For low values of θ, the latter incentive dominates, and the information

rents are decreasing in type.16 But for large θ the incentive to understate the type due to

communication costs becomes stronger and makes informational rents increase in type.17

The last observation implies that the principal can improve upon the mechanism (qSB(θ),mn
SB(θ))

maximizing (18). Specifically, the principal can eliminate the rents of inefficient types by

raising the quantities assigned to them above the second best to balance their incentives to

understate and overstate their types. As a result, in the optimal mechanism a non-negligible

fraction of agent types is held at their reservation utility level. So, the allocation of those

types is characterized by the following condition: U ′(θ) = −hθ(q(θ), θ)− Cnθ (mn(θ), θ) = 0.

This argument implies that the expression for virtual surplus needs to be adjusted. To

see how, note that when downwards incentive constraints are binding, assigning the allocation

15Such a θ∗ exists because Γq(0, θ) < 0, Γq(0, θ) > 0 and by Assumption 4(i) Γq(0, θ) is decreasing in θ.
16Indeed, because qSB and mn

SB are then close to their first best values, hθ is large and Cnθ is close to zero.
17qSB and mn

SB are then far away from their first-best levels, so that hθ is close to zero and Cnθ is negative

and has a large absolute value.
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(q,mn) to type θ requires paying information rent hθ(q, θ) − Cnθ (mn, θ) to all types below θ,

which reduces the principal’s expected profits by this amount times F (θ). But paying this

rent also allows to satisfy the participation constraints of those types below θ who would face

negative payoffs otherwise. So letting δ(θ) denote the shadow marginal value to the principal

from satisfying the participation constraints of types below θ and setting σ(θ) = F (θ)− δ(θ),
instead of (18), the principal’s adjusted virtual surplus from type θ becomes:

Ωn(q,mn, θ, σ(θ)) = v(q)− h(q, θ)− σ(θ)

f(θ)
hθ(q, θ)−

[
Cn(mn, θ) +

σ(θ)

f(θ)
Cnθ (mn, θ)

]
(20)

The optimal mechanism maximizes the adjusted virtual surplus (20) with σ determined en-

dogenously. Our next Theorem provides necessary and sufficient conditions under which the

solution has a simple structure, with individual rationality constraint binding for high types

and non-binding for low types. To state it, let σ̆(θ) be the solution in σ to hθ(q(σ, θ), θ) +

Cnθ (mn(σ, θ)), θ) = 0, where q(σ, θ) and mn(σ, θ) maximize (20) for a fixed value of σ.

Theorem 5 Suppose that Assumption 4 holds and σ̆′(θ) ≤ f(θ) for all θ ∈ [0, 1]. Then the

allocation (q(.),mn(.)) in the optimal mechanism is continuous, q(θ) is decreasing and mn(θ)

is increasing in θ, with mn(θ) = γn(θ), mn(θ) = γn(θ) and mn(θ) > γn(θ) for all θ ∈ (θ, θ).

Furthermore, q(θ) > 0 for all θ ∈ [θ, θ), q(θ) = 0, and there exists θ̂n ∈ (0, θ∗) s.t.:{
q(θ) = qSB(θ), U(θ) > 0 and U ′(θ) < 0 if θ ∈ [θ, θ̂n),

qSB(θ) < q(θ) < qFB(θ) and U(θ) = 0 if θ ∈ (θ̂n, θ).

The following Lemma provides conditions on the primitives which guarantee that the

assumption σ̆′(θ) ≤ f(θ) holds.

Lemma 1 Suppose that F (θ)
f(θ) is increasing, Cn is convex in mn, Cnmmθ ≤ 0, Cnθθm ≤ 0, hθθ ≤

0, and hθθq ≥ 0. Then σ̆′(θ) ≤ f(θ).

According to Theorem 5, low (efficient) agent types in [θ, θ̂n), are assigned standard second-

best quantities and earn positive surpluses. Higher (inefficient) types in (θ̂n, θ], are assigned

positive quantities exceeding the second-best ones and get zero surpluses. The boundary type

θ̂n is assigned the second-best quantity and gets zero surplus.

Theorem 5 is related to Proposition 1 in Maggi and Rodriguez-Clare (1995) which char-

acterizes the optimal mechanism with a single costly message. Both in their and our models

a non-trivial set of types [θ̂n, θ] are held at the reservation utility level. So this property is

robust to the number of signals. However, there are important differences between our and

their contributions. First, in their model the agent sends one signal, while we explore how the

number of signals affects the optimal mechanism (see also Theorem 6 below). Second, these
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authors impose the restriction q′(θ) ≥ 0 and m′(θ) ≥ 0 to guarantee that their second-order

conditions hold. We dispense with these assumptions.

The third difference between our results and those of Maggi and Rodriguez-Clare (1995)

is that we establish that the optimal mechanism exhibits no exclusion i.e., q(θ) > 0 for all

θ ∈ [θ, θ). So no type that can generate a positive surplus is excluded when the principal

optimally exploits the misrepresentation costs. This result is important as it underscores that

the phenomenon of exclusion, present in the standard case without costly signals, is not robust.

The next result provides the comparative statics properties of the solution.

Theorem 6 Suppose that there exist v, v̄ ∈ (0,∞) such that v ≤ ∂2Cn

∂m2
i
≤ v̄ and v ≤ | ∂2Cn∂θ∂mi

|

≤ v̄ for all i. Then there exists T < ∞ such that in the optimal mechanism θ̂n − θ ≤ T
n ,

qFB(θ)− q(θ) ≤ T
n , mn

i (θ)− γi(θ) ≤ T
n , U(θ) ≤ T

n , and Cn(mn(θ), θ) ≤ T
n , for all θ.

Thus, as n gets large, the quantity allocation in the optimal mechanism converges to

the first-best, while the misrepresentation cost becomes negligibly small and almost all agent

types get zero surplus (since θ̂n → θ.). So, the principal extracts almost all surplus. The small

size of the misrepresentation costs and the near-efficiency of the allocation contrasts with the

inefficiency of the second-best solution under adverse selection highlighted in the literature.

An economically significant lesson of this section resonating with our previous results is

that the overall efficiency increases and the principal gets more surplus as the number of costly

messages increases. The added value of Theorems 5 and 6 lies in showing how exactly the

principal achieves this.

3.4 Screening and Endogenous Size of the Signal Space

One factor that we have not considered yet is the possible presence of fixed costs. For example,

the principal may incur a cost to develop and administer a test, or process the transmitted

information. So in this subsection, we will characterize the optimal number of signals when the

principal has to pay a fixed cost G to set-up each signal, and study the relationship between

the total fixed costs nG and the agent’s communication costs in the optimal mechanism.

In this analysis, we will assume that the agent’s signal costs are additively separable across

signals, i.e. Cn(m1, ...,mn, θ) =
∑n

i=1 c(mi, θ). Also, for simplicity, we will henceforth treat n

as a continuous variable.

Let W (n) denote the principal’s expected surplus, gross of any fixed costs, in the optimal

mechanism with n signals. To derive the optimal number of signals n∗ that maximize the

principal’s profits W (n) − nG we establish the following Lemma. Letting D = {(m, θ) :

γ(θ) ≤ m ≤ γ(θ) and θ ≤ θ ≤ θ} define:

K = min
(m,θ)∈D

cθcm
cmθc

(m, θ)− 1, K = max
(m,θ)∈D

cθcm
cmθc

(m, θ)− 1
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Then we have:

Lemma 2 Suppose that cmmcmθ−cmmθcm < 0 for all θ.18 Then W (n) is a strictly increasing

and strictly concave function. Also, K > 0, and in the optimal mechanism agent-type θ sends

n signals m(θ) satisfying:

G

K
≤
∫ θ̄

θ
c(m(θ), θ)f(θ)dθ ≤ G

K

Lemma 2 implies that we can compute the optimal number of signals n∗ via the first-order

condition dW
dn (n∗) = G, unless G is prohibitively large in which case n∗ = 0. The Lemma also

shows that the ratio of the signal fixed cost G to the agent’s expected communication cost per

signal
∫ θ̄
θ c(m(θ), θ)f(θ)dθ is between K and K.

Although the fixed costs limit the optimal number of signals, our previous results show

that the optimal allocation profile converges to the first-best fast, at the rate n, as the number

of signals increases. This indicates that the associated increase in efficiency is sufficiently large

to dominate the set-up costs nG and the agent’s communication costs for sufficiently many

signals, when G is not too large.

To illustrate this, let us consider the following example. Let v(q) = q − 1
2q

2, h(q, θ) = θq,

c(m, θ) = 1
2(m − θ)2, and F (θ) = θ for θ ∈ [0, 1]. Then K = K = 1, so by Lemma 2

the principal’s cost nG of setting up the communication system equals the agent’s expected

communication cost. Table 3 highlights the relation between the fixed cost, the optimal

number of signals n∗ and the associated change in the principal’s surplus. To normalize, we

express the fixed cost and the principal’s gain of surplus over the second best, W (n)−WSB,

as a fraction of the maximal potential gain in surplus WFB −WSB.

Table 3.

G
WFB−WSB 24% 12% 8% 5.5% 4% 3% 2.5% 2% 1.7% 1.4%

n∗ 1 2 3 4 5 6 7 8 9 10
W (n∗)−WSB

WFB−WSB 33% 50% 60% 66.6% 71.4% 75% 77.8% 80% 81.8% 83.3.%

Thus, in this example the principal will elicit at least 10 signals if the fixed cost of setting-

up an extra signal does not exceed 1.4% of the potential increase in the principal’s surplus. By

Lemma 2, the agent will then incur the expected signal costs of 14% of the potential gain of

the principal’s surplus, thereby dissipating a part of the benefit. Nevertheless, the principal’s

surplus will increase by 83.3% percent of the available maximal gain, and hence her profits

(net of fixed communication costs) will reach 69.3% of the total potential maximal gain.

18Since cmm > 0, cmθ < 0, and cm > 0 for m > γ(θ), for this condition to hold it is sufficient that cmmθ ≤ 0.

More generally, the condition holds if cmmθ is not too large.
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To conclude this section, note that a fixed cost may be associated with a particular signal,

rather than an agent. This is especially plausible in employer-employee relationship where a

message represents an outcome of a test given to a job-candidate. Then test-specific fixed costs

will be amortized over all the job-candidates, and therefore would create less of an obstacle for

increasing the number of tests. In this case, our model predicts that larger firms who interview

many applicants will put more emphasis on testing and evaluation of candidates, rather than

on providing on-the-job incentives. This appears to be broadly consistent with reality.

4 Conclusions

This paper shows that in environments with misrepresentation costs, signalling structure

and screening mechanisms in which the agents send multiple signals significantly expand

the set of implementable outcomes allowing to attain (near-) efficiency with small signal-

ing/misrepresenentation costs. We also point out that an optimal method of dealing with

asymmetric information regarding employees’ abilities in such environments involves the de-

sign of testing and interviewing procedures, rather than on-the-job incentive schemes. These

results suggest that the problem of dissipation of resources in unproductive screening and

signalling, the so-called ‘rat race,’ may not be as significant as previously thought.

Although not shown here, Theorems 1 and 3 continue to hold when the type is multi-

dimensional. This is important since in many contexts an agent’s skills and abilities have

multiple aspects. For example, a Department hiring new faculty members is concerned about

their teaching and research abilities, collegiality, and propensity to contribute to service.
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5 Appendix

Proof of Theorem 1.

Let u and u be the maximal and minimal possible sender’s utilities i.e.,

u = max{u(x, θ) : θ ∈ Θ and x = BR(µ) for some µ ∈ ∆(Θ)},
u = min{u(x, θ) : θ ∈ Θ and x = BR(µ) for some µ ∈ ∆(Θ)}.

The continuity of u(·, ·) and the compactness of X and [θ, θ] imply that −∞ < u < u <∞.

We now claim that µ(γn(θ)), the receiver’s posterior following the message profile γn(θ),

must be supported on a sufficiently small neighborhood of θ. Indeed, let k =
√

u−u
ωL2 and

suppose that ||θ − θ′|| > k√
n

. Using this inequality and Assumption 1 we obtain:

min
µ
u(BR(µ), θ′)− Cn(γn(θ′), θ′)−max

µ
u(BR(µ), θ′)− Cn(γn(θ), θ′)

≥ u− u+ ω||γn(θ′)− γn(θ)||2 > u− u+ ωnL2||θ′ − θ||2 > 0,

So for any type θ′ satisfying ||θ−θ′|| > k√
n

sending γn(θ) is dominated by sending γn(θ′). Thus,

in any equilibrium satisfying the dominance criterion supp(µ(γn(θ))) ∈
(
θ − k√

n
, θ + k√

n

)
We now claim that supp(µ(m̃n(θ))) converges to {θ} as n → ∞. To this effect, observe

that Assumption 1(ii) implies that Cn(m̃n(θ), θ) ≥ ω||m̃n(θ)− γn(θ)||2. So,

u ≤ u(x̃n(θ), θ)− Cn(m̃n(θ), θ) ≤ ū− ω||m̃n(θ)− γn(θ)||2.

Hence, ||m̃n(θ) − γn(θ)|| ≤ Lk. Now let θ
′
n be such that m̃n(θ′n) = m̃n(θ). Then using

Assumption 1 (i) we obtain:

L
√
n|θ′n − θ| ≤ ||γn(θ′n)− γn(θ)|| = || (m̃n(θ)− γn(θ))−

(
m̃n(θ)− γn(θ′n)

)
|| ≤

||m̃n(θ)− γn(θ)|| + ||m̃n(θ)− γn(θ′n)|| ≤ 2Lk. (21)

It follows from (21) that |θ′− θ| ≤ 2k√
n

. So supp.µ(m̃n(θ)) ∈ [θ− 2k√
n
, θ+ 2k√

n
] establishing that

supp.µ(m̃n(θ)) converges to {θ} as n→∞.
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Next, since v(x, θ) is concave in x, x̃n(θ) = BR(µ(m̃n(θ)) is unique and satisfies∫
[θ,θ] vx(x̃n(θ), θ)dµ(m̃n(θ))(t) = 0. By the intermediate value Theorem we then have:

vx(x̃n(θ), θ) +

∫
[θ,θ]

(t− θ)vxθ(x̃n(θ), s(t, θ)dµ(m̃n(θ))(t) = 0,

where s(t, θ) lies between t and θ for all t. Combining this equality with vx(x∗(θ), θ) = 0,

which holds by definition of x∗(θ), and using the Intermediate value Theorem again yields:

(x∗(θ)− x̃n(θ))vxx(x′, θ) =

∫
[θ,θ]

(t− θ)vxθ(x̃n(θ), s(t, θ)dµ(m̃n(θ))(t), (22)

where x′ ∈ [min{x∗(θ), x̃n(θ)},max{x∗(θ), x̃n(θ)}]. Since, as established above, |t′ − θ| ≤ 2k√
n

when t′ ∈ supp.µ(m̃n(θ)), equation (22) then implies:

|x̃n(θ)− x∗(θ)| ≤ 2k√
n

max(x′,θ′)∈X×[θ,θ] |vxθ(x
′, θ′)|

min(x′,θ′)∈X×[θ,θ] |vxx(x′, θ′)|
≡ K2√

n
. (23)

The argument that establishes (23) relies on supp.µ(m̃n(θ)) ∈ [θ − 2k√
n
, θ + 2k√

n
]. So, since

we have also established above that supp(µ(γn(θ))) ∈
(
θ − k√

n
, θ + k√

n

)
, it follows that

|BR(µ(γn(θ))− x∗(θ)| ≤ K2√
n

. Finally, we have:

Cn(m̃n(θ), θ) ≤ u(x̃n(θ), θ)− u(BR(µ(γn(θ)), θ) ≤

|x̃n(θ)−BR(µ(γn(θ))| × | max
(x′,θ′)∈X×[θ,θ]

ux(x′, θ′)| ≤ 2K2√
n
× | max

(x′,θ′)∈X×[θ,θ]
ux(x′, θ′)|,

where the first inequality holds by incentive compatibility, the second inequality follows from

|x̃n(θ)− x∗(θ)| ≤ K2√
n

and |BR(µ(γn(θ))− x∗(θ)| ≤ K2√
n

.

Setting K = max{k,K2, 2K2|max(x′,θ′)∈X×[θ,θ] ux(x′, θ′)|} completes the proof. Q.E.D.

Proof of Theorem 2. An argument similar to the one in the proof of Theorem 1

establishes that the lower endpoint of µ(γn(θ)) must exceed θ−
√

u−u
ωnL2 . The monotonicity of

the receiver’s best response correspondence then implies that BR(µ(γn(θ)) ≥ x∗(θ−
√

u−u
ωnL2 ),

so that by sending the message profile γn(θ) sender type θ can guarantee itself a payoff of

u(x∗(θ −
√

u−u
ωnL2 ), θ).

We now claim that supp(µ(m̃n(θ))) converges to {θ} as n → ∞. Indeed, suppose to the

contrary that there exists ε > 0 and for each n a perfect Bayesian equilibrium and a sender

type θn such that θ
′′
n−θ′n ≥ ε, where θ

′′
n = max supp µ(m̃n(θn)) and θ′n = min supp µ(m̃n(θn)).

By monotonicity, it follows that supp µ(m̃n(θn)) = [θ′n , θ
′′
n].

For any pair θ′, θ′′ with θ′′ > θ′ let µθ′,θ′′ denote the conditional distribution of F on [θ′, θ′′].

Let ∆ = inf{u(x∗(θ′′), θ′′) − u(BR(µθ′,θ′′) : θ′′ − θ′ ≥ ε}, and observe that ∆ > 0. Then we
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have Un(θ′′n) = u(x̃n(θ′′n), θ′′n)−Cn(m̃n(θ′′n), θ′′n) ≤ u(x̃n(θ′′n), θ′′n) ≤ u(x∗(θ′′n), θ′′n)−∆, which for

sufficiently large n contradicts that Un(θ′′n) ≥ u(x∗(θ′′n −
√

u−u
ωnL2 ), θ′′n). Q.E.D.

Proof of Theorem 3. Fix any pair of twice continuously differentiable functions q : Θ→
Q and t : Θ→ R. Then U(θ) ≡ t(θ)− h(q(θ), θ) is also twice continuously differentiable. We

will show that there exists N < ∞ and a sequence of transfers and messages rules (tn,mn),

such that for all n ≥ N the mechanism (q(.), tn(.),mn(.)) is incentive compatible and provides

each type with net payoff U(θ), i.e.

U(θ) = tn(θ)− h(q(θ), θ)− Cn(mn(θ), θ) = max
θ′∈Θ
{tn(θ′)− h(q(θ′), θ)− Cn(mn(θ′), θ)} (24)

The proof goes through a sequence of steps.

Step 1. First, let us construct signal rule mn(θ).

Let zn : Θ→ R, mn
i,z(θ) = γni (θ)+zn(θ) for all i, and mn

z (θ) = (mn
1,z(θ), ...,m

n
n,z(θ)). When

incentive constraints (i.e., second equality in (24)) hold, the envelope theorem implies that

U ′(θ) = −hθ(q(θ), θ)− Cnθ (mn
z (θ), θ) (25)

Let us show that for each n and θ there exists a unique zn(θ) so that (25) holds. To this

end, rewrite (25) as:

f(z) ≡ Cnθ (mn
z (θ), θ) = −U ′(θ)− hθ(q(θ), θ) (26)

By Assumption 3(iii) we have f ′(z) =
∑

iC
n
θmi

(mn
z (θ), θ) < 0, so there is at most one

solution to (26). Let us now show that there exists such a solution.

First, we claim that Cnθ (γn(θ), θ) = 0. Indeed, differentiating the identity Cn(γn(θ), θ) ≡ 0,

we obtain
∑

iC
n
mi(γ

n(θ), θ)
∂γni (θ)
∂θ + Cnθ (γn(θ), θ) = 0. Since mn = γn(θ) uniquely minimizes

Cn(·, θ), we have Cnmi(γ
n(θ), θ) = 0 for all i ∈ {1, ..., n} establishing the claim. Next, letting

mn
i,t(θ) = γni (θ) + tz for t ∈ [0, 1], we have:

Cnθ (mn
z (θ), θ)− Cnθ (γn(θ), θ) =

∫ 1

0
z
∑
i

Cnθmi(m
n
t (θ), θ)dt. (27)

Equation (27) and Assumption 3(iii) imply that f(z) = Cnθ (mn
z (θ), θ)−Cnθ (γn(θ), θ) ≤ −ω1nz

if z > 0, and so f(z) → −∞ as z → ∞. Similarly, f(z) ≥ ω1n|z| if z < 0, so f(z) → ∞ as

z → −∞. Hence, there is a unique solution zn(θ) to (25).

Step 2. Let us show that mn
z (θ)→ γn(θ) as n grows, uniformly in θ.

Let g(θ) = −hθ(q(θ), θ)−U ′(θ). It then follows from (25), (27) and Assumption 3(iii) that:

|g(θ)| = |Cnθ (mn
z (θ), θ)− Cnθ (γn(θ), θ)| ≥ ω1n|zn(θ)| (28)
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Furthermore, since g is continuous and Θ is compact, it follows from the Weierstrass Theorem

that there exists a constant λ > 0 s.t. |g(θ)| ≤ λ for all θ. Hence (28) implies that |zn(θ)| ≤
λ
ω1
n−1 → 0 as n→∞. We conclude that mn

z (θ)→ γn(θ) as n→∞, uniformly in θ.

Step 3. In this step we establish the following auxiliary Lemma:

Lemma 3 A mechanism {mn(·), q(·), t(·), } is incentive compatible if and only if

t(θ) = min
θ′∈Θ
{U(θ′) + h(q(θ), θ′) + Cn(mn(θ), θ′)}, (29)

where U(θ) = t(θ)− h(q(θ), θ)− Cn(mn(θ), θ).

Proof of Lemma 3: Suppose {mn(·), q(·), t(·)} is incentive compatible. Then:

U(θ′) ≥ t(θ)− h(q(θ), θ′)− Cn(mn(θ), θ′) ,

for all θ, θ′, with equality at θ′ = θ. Hence (29) holds.

Conversely, suppose that (29) holds. Then {mn(·), q(·), t(·)} is incentive compatible be-

cause

U(θ) = t(θ)− h(q(θ), θ)− Cn(mn(θ), θ) ≥ t(θ′)− h(q(θ′), θ)− Cn(mn(θ′), θ).

Q.E.D.

Step 4. Set tn(θ) = U(θ) + h(q(θ), θ) + Cn(mn
z (θ), θ).

By Lemma 3 the allocation {q(·), t(·),mn(·)} is implementable if:

tn(θ) = min
θ′∈Θ
{U(θ′) + h(q(θ), θ′) + Cn(mn

z (θ), θ′)} (30)

Let us show that (30) holds for sufficiently large n.

First, consider θ′ such that |θ′ − θ| > ω1. It follows from Assumption 3(ii) that

Cn(mn
z (θ), θ′)− Cn(mn

z (θ), θ) ≥ ω1||mn
z (θ)− γn(θ′)||2 − ω2||mn

z (θ)− γn(θ)||2. (31)

Now mn
i,z(θ) = γi(θ) + zn(θ) for all i, and by Step 2 we have |zn(θ)| ≤ λ

ω1
n−1. It follows

that the second term in (31) converges to zero uniformly in θ. For the same reason, the

expression mn
z (θ) − γn(θ′) in the first term of (31) converges to γn(θ) − γn(θ′), uniformly

in θ. Now by Assumption 3(i) we have ||γn(θ) − γn(θ′)||2 ≥ nL2|θ′ − θ|2 implying that the

first term on the right side of (31) goes to infinity, whenever |θ′ − θ| > ω1. Now let κ =

|maxθ,θ′ {h(q(θ), θ)− h(q(θ), θ′) + U(θ)− U(θ′)} |. It then follows that there exists N1 < ∞
s.t. for all n ≥ N1 the right side of (31) exceeds κ, so that (30) holds for all |θ′ − θ| > ω1.
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It remains to show that (30) holds for all |θ′− θ| ≤ ω1. To this end let V (θ′, θ) denote the

minimand in (30), and note that by (25), we have ∂V (θ′,θ)
∂θ′ θ′=θ

= 0 for all θ ∈ Θ. Furthermore,

∂2V (θ′, θ)

∂ (θ′)2 = U ′′(θ′) + hθθ(q(θ), θ
′) + Cnθθ(m

n
z (θ), θ′).

Let β = maxθ′,θ∈Θ |U ′′(θ′) + hθθ(q(θ), θ
′)|. By Assumption 3(iv) we have ∂2V (θ′,θ)

∂(θ′)2
≥ −β+ω1n

whenever ||mn − γn(θ)|| =
√
n|zn(θ)| ≤ ω1. From step 2, we have |zn(θ)| ≤ λ

ω1
n−1. Select N2

such that ω1n − β > 0 and λn−
1
2 ≤ ω2

1 for all n ≥ N2. Then for all θ and all n ≥ N2, the

function V (θ′, θ) is strictly convex in θ′ over the domain |θ′ − θ| ≤ ω1, and attains its unique

minimum at θ′ = θ, so that (30) holds for all |θ′ − θ| ≤ ω1.

Step 5. Assumption 3(ii) and Step 2 above imply that

Cn(mn
z (θ), θ) ≤ ω2n|zn(θ)|2 ≤

(
λ

ω1

)2

ω2n
−1

Consequently, Cn(mn
z (θ), θ)→ 0 as n grows, uniformly in θ. From (24), this also implies that

tn(θ)→ t(θ), uniformly in θ, completing the proof. Q.E.D.

Proof of Theorem 4: First, we select the message rule mn
z (θ) as in the Step 1 of the proof

of Theorem 3 to satisfy condition (25). Note that U ′(θ) + hθ(q(θ), θ) = t′(θ)− hq(q(θ), θ)dq(θ)dθ

which is nonnegative by Assumption. Hence, (25) implies that Cnθ (mn
z (θ), θ) ≤ 0. Therefore,

mn
z (θ) solving (25) satisfies mn

z (θ) ≥ γn(θ) and so the one-sided nature of the signal cost

function in this case does affect the cost of equilibrium signals.

Then Steps 2 and 5 in the proof of Theorem 3 apply verbatim to establish that mn
z (θ)→

γn(θ) and Cn(mn
z (θ), θ)→ 0 as n grows, uniformly in θ.

It remains to show that our mechanism is incentive compatible which, with transfer t(θ)

defined as in the proof of Theorem 3, is equivalent to showing that for all θ, θ′ ∈ Θ we have:

U(θ′) ≥ U(θ) + h(q(θ), θ)− h(q(θ), θ′) + Cn(mn
z (θ), θ)− Cn(mn

z (θ), θ′). (32)

First, for θ′ s.t. γn(θ′) ≤ mn
z (θ) the proof that (32) holds is the same as in Theorem 3. Now

suppose that θ′ is such that γn(θ′) > mn
z (θ) and so Cn(mn

z (θ), θ′) = 0. Then there exists

θ′′ ∈ (θ, θ′) s.t. γn(θ′′) = mn
z (θ) and for which by the above argument we have:

U(θ′′) ≥ U(θ) + h(q(θ), θ)− h(q(θ), θ′′) + Cn(mn
z (θ), θ)

Therefore, (32) holds if U(θ′) − U(θ′′) ≥ h(q(θ), θ′′). Finally, note that the latter inequality

holds because U(θ′) − U(θ′′) ≥ −
∫ θ′
θ′′ hθ(q(s), s)ds ≥ −

∫ θ′
θ′′ hθ(q(θ), s)ds = h(q(θ), θ′′). The

first inequality in this sequence holds because U ′(θ) + hθ(q(θ), θ) = t′(θ)− hq(q(θ), θ)dq(θ)dθ ≥ 0

and the second inequality holds because q(.) is decreasing, hqθ ≥ 0 and θ ≤ θ′′ ≤ s. Q.E.D.
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6 Online Appendix (Not For Publication).

Proofs of the Results in Section 3.4.

Proof of Theorem 5: In the optimal mechanism the principal selects “quantity” and transfer

functions, q(·) and t(·), and a vector of signals mn(·) to solve:

max
q(θ),t(θ),mn(θ)

∫ θ

θ
(v(q(θ))− t(θ))f(θ)dθ

subject to the following incentive and the individual rationality constraints, respectively:

t(θ)− h(q(θ), θ)− Cn(mn(θ), θ) ≥ t(θ′)− h(q(θ′), θ)− Cn(mn(θ′), θ) for all θ and θ′ (33)

U(θ) ≡ t(θ)− h(q(θ), θ)− Cn(mn(θ), θ) ≥ 0 for all θ. (34)

Using (34) to substitute t(θ) from the objective, and replacing the incentive constraints

(33) by the first-order condition associated with the agent’s utility maximization, yields the

following “relaxed” problem:

max
q(θ),mn(θ),U(θ)

∫ θ

θ
{v(q(θ))− h(q(θ), θ)− Cn(mn(θ), θ)− U(θ)} f(θ)dθ (35)

subject to individual rationality constraint (34) and the first-order condition:

U ′(θ) = −hθ(q(θ), θ)− Cnθ (mn(θ), θ). (36)

The proof of the Theorem proceeds as follows. First, we obtain the solution to the relaxed

program. Then we will verify that the solution to the relaxed program satisfies the incentive

constraints (33) and hence also solves the unrelaxed problem.

To solve the relaxed problem, define the Hamiltonian:

H = (v(q)− h(q, θ)− Cn(mn, θ)− U) f(θ)− σ (hθ(q, θ) + Cnθ (mn, θ)) + ρU (37)

Maximizing (37) w.r.t. q and mn yields the first order conditions:

{vq(q)− hq(q, θ)}f(θ)− σhqθ(q, θ) ≤ 0 (= 0, if q > 0) (38)

∂Cn

∂mi
(mn, θ)f(θ) + σ

∂2Cn

∂mi∂θ
(mn, θ) = 0 (39)

The costate equation is

σ′(θ) = f(θ)− ρ(θ), (40)

Furthermore, the solution has to satisfy complementary slackness conditions

ρ(θ)U(θ) = 0, ρ(θ) ≥ 0, and U(θ) ≥ 0, (41)
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We also have the following transversality conditions: σ(θ)U(θ) = 0, σ(θ̄)U(θ̄) = 0, σ(θ) ≤ 0

and σ(θ̄) ≥ 0.

The rest of the proof proceeds through a number of Claims.

Claim 1. For θ ∈ [θ, θ] and σ ≥ 0 let q(σ, θ) and mn(σ, θ) maximize the Hamiltonian

H in (37) w.r.t. q and mn, respectively. Then q(σ, θ) is decreasing in σ, strictly so whenever

q(σ, θ) > 0, and mn(σ, θ) is strictly increasing in σ, while mn(σ, θ) ≥ γn(θ) with strict

inequality when σ > 0.

By definition, q(σ, θ) is the solution in q to

max
q≥0

{
v(q)− h(q, θ)− σ

f(θ)
hθ(q, θ)

}
, (42)

and mn(σ, θ) is the solution in mn to

min
mn∈Rn

{
Cn(mn, θ) +

σ

f(θ)
Cnθ (mn, θ)

}
. (43)

The existence of q(σ, θ) and mn(σ, θ) is guaranteed by the Weierstrass theorem because, re-

spectively: (i) q(σ, θ) belongs to [0, qFB(θ)]; (ii) the value of (43) goes to ∞ as ||mn|| → ∞.19

Next, observe that the cross partial of the objective (42) in (q, σ) is equal to− 1
f(θ)hqθ(q, θ) <

0. Hence it has strictly decreasing differences in (q, σ), and so q(σ, θ) must be decreasing in

σ. Similarly, mn(σ, θ) is increasing in σ. Indeed, by Assumption 4(iii) the cross-partial of the

objective in (43) w.r.t. mn and θ equals 1
f(θ)

∂2Cn

∂mi∂θ
(mn, θ) < 0, so this objective has decreas-

ing differences in (mn, σ). Furthermore the objective in (43) is submodular in mn because
∂2Cn

∂mi∂mj
+ σ

f(θ)
∂3Cn

∂mi∂mj∂θ
< 0 for all j 6= i. This inequality follows from Assumption 4 (iii) when

∂3Cn

∂mi∂mj∂θ
≤ 0; and from Assumption 4 (ii) and the fact that 0 ≤ σ ≤ F (θ) when ∂3Cn

∂mi∂mj∂θ
> 0.

Finally, recall that Cmi(m
n(σ, θ), θ) < 0 if mn

i (θ) < γni (θ), and ∂Cn(mn,θ)
∂mi∂θ

< 0. So, if

mn(σ, θ) is such thatmn
i (θ) ≤ γni (θ) then

∂Cn(mn,θ)+ σ
f(θ)

Cnθ (mn,θ)

∂mi
= Cnmi(m

n, θ)+ σ
f(θ)C

n
miθ

(mn, θ) ≤
0 with strict inequality either if mn

i (θ) < γni (θ) or if mn
i (θ) = γni (θ) and σ > 0. Therefore, we

must have mn
i (θ) ≥ γni (θ) for all i, with strict inequality when σ > 0.

Claim 2. Let U ′(σ, θ) = −hθ(q(σ, θ), θ) − Cnθ (mn(σ, θ), θ). Then for all θ ∈ [θ, θ] there

exists a unique σ̆(θ) such that U ′(σ, θ) < 0 if σ < σ̆(θ) and U ′(σ, θ) > 0 if σ > σ̆(θ).

Furthermore, σ̆(θ) = 0 and σ̆(θ) > 0 for all θ < θ.

Since hqθ > 0 and ∂2Cn

∂mi∂θ
< 0 for all i, it follows from Claim 1 that U ′(σ, θ) is strictly

increasing in σ. Hence there is at most one value σ such that U ′(σ, θ) = 0. To establish

19Henceforth, we will also assume that q(σ, θ) and mn(σ, θ) are unique. This can always be guaranteed by

assuming that the objective function in (42) is quasiconcave in q, and that the objective function in (43) is

quasiconvex in mn.
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that such value exists, let us show that U ′(σ, θ) ≤ 0 when σ = 0, and U ′(σ, θ) > 0 when σ is

sufficiently large.

First, consider σ = 0. It follows from (42) and (43) that q(0, θ) = qFB(θ) ≥ 0 and

mn(0, θ) = γn(θ) for all θ. Since Cnθ (γ(θ), θ) = 0, we have U ′(0, θ) = −hθ(qFB(θ), θ) ≤ 0.

This inequality is strict for all θ < θ because qFB(θ) > 0 for all such θ. It follows that σ̆(θ) > 0

for all θ < θ. Furthermore, since qFB(θ) = 0 we have U ′(0, θ) = −hθ(0, θ) = 0, so σ̆(θ) = 0.

Next, let us show that U ′(σ, θ) > 0 for all σ > σ(θ), where σ(θ) =
v′(0)−hq(0,θ)

min
q∈[0,qFB(θ)]

hqθ(q,θ)f(θ).

To this end, we first claim that q(σ, θ) = 0 for all σ ≥ σ(θ). Indeed, suppose to the contrary

that q(σ, θ) > 0 for some σ ≥ σ(θ). Since q(σ, θ) satisfies (38), we have:

vq(q(σ, θ))− hq(q(σ, θ), θ) =
σ

f(θ)
hqθ(q(σ, θ), θ) ≥

σ

f(θ)
hqθ(q(σ, θ), θ) ≥ v′(0)− hq(0, θ) (44)

But (44) contradicts the assumption that vq(q)− hq(q, θ) is strictly decreasing in q.

Since q(σ, θ) = 0 for all σ ≥ σ(θ), it follows that U ′(σ, θ) = −Cnθ (mn(σ, θ), θ) for all

σ ≥ σ(θ). By Claim 1, mn(σ, θ) > γn(θ) whenever σ > σ(θ), because σ(θ) ≥ 0. Since

Cnθ (γn(θ), θ) = 0 and ∂2Cn

∂θ∂mi
< 0, it then follows that Cnθ (mn(σ, θ), θ) < 0, thereby establishing

that U ′(σ, θ) > 0 for all σ > σ(θ). Combining this with U ′(0, θ) ≤ 0 and the uniqueness of

σ̆(θ) s.t. U ′(σ̆(θ), θ) = 0 implies that U ′(σ, θ) < 0 if σ < σ̆(θ), and U ′(σ, θ) > 0 if σ > σ̆(θ).

Claim 3. U(F (θ), θ) has a unique minimizer θ̂n ∈ (0, θ∗). Moreover, U ′(F (θ), θ) < 0 for

θ < θ̂n and U ′(F (θ), θ) > 0 for θ > θ̂n.

It is easy to see that UnSB(θ) ≡ U(F (θ), θ) is strictly quasiconvex. So it has a unique

global and local minimizer which we take to be θ̂n. So U ′(F (θ), θ) < 0 for all θ ∈ [θ, θ̂n) and

U ′(F (θ), θ) > 0 for all θ ∈ [θ̂n, θ].

We will establish that U ′(F (θ), θ) < 0 and U ′(F (θ∗), θ∗) > 0, implying that θ̂n ∈ (0, θ∗).

By Claim 2, σ̆(θ) > 0 and hence U ′(F (θ), θ) = U ′(0, θ) < 0. Now, q(F (θ∗), θ∗) = qSB(θ∗) = 0

so that hθ(q(F (θ∗), θ∗), θ∗) = 0. Also, since F (θ∗) > 0, by Claim 1 mn(F (θ∗), θ∗) > γn(θ∗)

and so Cnθ (mn(F (θ∗), θ∗), θ∗) < 0. Thus U ′(F (θ∗), θ∗) > 0.

Claim 4. On the interval [θ, θ̂n) the solution to the relaxed program is such that q(θ) =

qSB(θ), mn(θ) = mn(F (θ), θ) and U ′(θ) < 0 .

By Claim 3 it suffices to prove that σ(θ) = F (θ) for all θ ≤ θ̂n. Note that σ(θ) ≤ F (θ) by

the transversality condition σ(θ) ≤ 0, and the fact that σ′(θ) ≤ f(θ), which is implied by the

costate equation (40) and the condition ρ(θ) ≥ 0.

Now recall from the proof of Claim 2 that U(σ, θ) is strictly increasing in σ. It follows

from σ(θ) ≤ F (θ) that U ′(θ) = U ′(σ(θ), θ) ≤ U ′(F (θ), θ) < 0 for all θ ≤ θ̂n, where the final

inequality holds by Claim 3. Since U(θ̂n) ≥ 0, we therefore have U(θ) > 0 for all θ < θ̂n.

The transversality condition then implies that σ(θ) = 0, and the complementary slackness
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condition (41) then implies that ρ(θ) = 0 so that σ′(θ) = f(θ) for all θ < θ̂n. This establishes

that σ(θ) = F (θ) for all θ < θ̂n, and hence by continuity also at θ̂n.

Claim 5. U(θ̂n) = 0, and σ(θ) < F (θ) for all θ > θ̂n.

Since σ(θ̂n) = F (θ̂n) by Claim 4 and σ′(θ) ≤ f(θ) for all θ by (40), it follows that

σ(θ) ≤ F (θ) for all θ > θ̂n.

Let θ′ = max{θ ≥ θ̂n : σ(θ) = F (θ)}, and suppose that contrary to this Claim θ′ > θ̂n.

Let us show that in this θ′ = θ then. Indeed, since σ(θ′) = F (θ′), we must have σ(θ) = F (θ)

for all θ ∈ (θ̂n, θ
′]. It then follows from Claim 3 that U ′(θ) = U ′(σ(θ), θ) = U ′(F (θ), θ) > 0

on (θ̂n, θ
′], implying that U(θ′) > 0. Thus if θ′ < θ, there exists a right neighborhood V

of θ′ on which the individual rationality constraint U(θ) ≥ 0 is not binding. It then follows

from the complementary slackness condition (41) that on this neighborhood we have ρ(θ) = 0,

and hence by the costate equation (40) that σ′(θ) = f(θ). Thus σ(θ) = F (θ) for all θ ∈ V ,

contradicting the definition of θ′, thereby establishing that θ′ = θ.

Next, let us show that σ̆(θ) < F (θ) for all θ > θ̂n. Indeed, since σ(θ) = F (θ) for all θ > θ̂n,

Claim 3 yields U ′(θ) = U ′(F (θ), θ) > 0 for all θ > θ̂n. Because U ′(σ, θ) is strictly increasing

in σ this implies that σ̆(θ) < F (θ) for all θ > θ̂n.

Since q(θ) = q(σ(θ), θ) = q(F (θ), θ) and mn(θ) = mn(σ(θ), θ) = mn(F (θ), θ), and

since 0 < σ̆(θ) < F (θ) for all θ > θ̂n, it follows from Claim 1 that q(θ) < q(σ̆(θ), θ) <

qFB(θ) and γn(θ) < mn(σ̆(θ), θ) < mn(F (θ), θ) = mn(θ) for all θ ∈ (θ̂n, θ). But then the

value of the relaxed program can be strictly increased by setting U(θ) = 0 and assigning

(q(σ̆(θ), θ),mn(σ̆(θ), θ)) on the interval [θ̂n, θ], as can be seen from

v(q(σ̆(θ), θ))− h(q(σ̆(θ), θ), θ)− Cn(mn(σ̆(θ), θ), θ) > v(q(θ))− h(q(θ), θ)− Cn(mn(θ), θ)

This contradiction establishes that σ(θ) < F (θ) for all θ > θ̂n.

It follows that there exists a decreasing sequence {θ`} ⊂ (θ̂n, θ) converging to θ̂n, such that

ρ(θ`) > 0 and hence U(θ`) = 0. So, by continuity of U(·) we have U(θ̂n) = 0.

Claim 6. U(θ) = 0 for all θ > θ̂n if and only if σ̆′(θ) ≤ f(θ) for all θ > θ̂n.

If U(θ) = 0 for all θ > θ̂n, then σ(θ) = σ̆(θ) and hence σ′(θ) = σ̆′(θ) for all θ > θ̂n. Since

ρ(θ) ≥ 0, by the costate equation we have σ̆′(θ) = σ′(θ) = f(θ)− ρ(θ) ≤ f(θ) for all θ > θ̂n.

Conversely, suppose that σ̆′(θ) ≤ f(θ) for all θ > θ̂n, and that contrary to the statement

of the claim there exists some θ ≥ θ̂n such that U(θ) > 0. Let θ1 = inf{θ ≥ θ̂n : U(θ) > 0}.
We now claim that σ(θ1) = σ̆(θ1). If θ1 > θ̂n this is immediate, since we then have U(θ) = 0

and hence σ(θ) = σ̆(θ) for all θ ∈ [θ̂n, θ1]. Now if θ1 = θ̂n, it follows from Claim 5 that for

every ε > 0 there exists (θ′, θ′′) ⊂ (θ̂n, θ̂n + ε) on which U(θ) = 0 and hence σ(θ) = σ̆(θ). The

continuity of the functions σ(·) and σ̆(·) then implies that σ̆(θ̂n) = σ(θ̂n).
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Next, we establish that σ(θ) > σ̆(θ) for all θ > θ1. Indeed, σ(θ) ≥ σ̆(θ) for all θ > θ1, since

on any interval on which U(t) > 0 we have σ′(t) = f(t) ≥ σ̆′(t), and on any interval on which

U(t) = 0 we have σ(t) = σ̆(t). But we cannot have σ(θ) = σ̆(θ) for any θ > θ1, as this would

imply that σ′(t) = f(t) = σ̆′(t) for all t ∈ (θ1, θ), hence that σ(t) = σ̆(t) for all t ∈ [θ1, θ]. But

then we have U(t) = U(θ1) for all t ∈ [θ1, θ], contradicting the definition of θ1.

It follows from the fact that σ(θ) > σ̆(θ) for all θ > θ1 that U ′(θ) = U ′(σ(θ), θ) >

U ′(σ̆(θ), θ) = 0, and hence that U(θ) is strictly increasing for all θ > θ1. As in the proof of

Claim 5, we can then show that the value of the relaxed program can be improved by setting

U(θ) = 0 and assigning (q(σ̆(θ), θ),mn(σ̆(θ), θ)) for all θ > θ1. This contradiction establishes

that U(θ) = 0 for all θ > θ̂n.

Claim 7. mn(θ) = γn(θ), mn(θ) = γn(θ) and mn(θ) > γn(θ) for all θ ∈ (θ, θ). Further-

more, q(θ) > 0 for all θ ∈ [θ, θ).

By Claim 4 σ(θ) = F (θ) for all θ ≤ θ̂n, and by Claim 6 σ(θ) = σ̆(θ) for all θ ≥ θ̂n. Also,

by Claim 2, σ̆(θ) = 0 and σ̆(θ) > 0 for all θ < θ. So, σ(θ) = σ(θ) = 0, and σ(θ) > 0 for all

θ ∈ (θ, θ). Then from Claim 1 it follows that mn(θ) > γn(θ) for all θ ∈ (θ, θ). Further, from

(43) it follows that mn(0, θ) = γn(θ). Hence, mn(θ) = γn(θ), mn(θ) = γn(θ).

To establish that q(θ) > 0 for all θ < θ, note that q(θ) = qSB(θ) > 0 for all θ ∈ [θ, θ̂n).

Now, if q(θ) = 0 for some θ ∈ [θ̂n, θ), then since hθ(0, θ) = 0 equation (36) implies that

0 = U ′(θ) = Cnθ (mn(θ), θ). But from mn(θ) > γn(θ), Cnθ (γn(θ), θ) = 0 and Cnmi < 0 for all i

it follows that Cnθ (mn(θ), θ) < 0, a contradiction. Thus q(θ) > 0 for all θ ∈ [θ̂n, θ).

Claim 8. Global incentive compatibility of the solution to the relaxed program.

It remains to show that this solution satisfies incentive constraints (33) i.e., for any pair

of types (θ, θ′) we have:

U(θ)− U(θ′) + h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ′)− Cn(mn(θ′), θ′) ≥ 0 (45)

First, suppose that θ′ ∈ [θ̂, θ] i.e., U(θ′) = 0. We will consider the case θ′ > θ. The proof

for the case θ′ < θ is similar. Then we have:

U(θ)− U(θ′) + h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ′)− Cn(mn(θ′), θ′) =

U(θ)− U(θ′)−
∫ θ′

θ
hθ(q(θ

′), s) + Cnθ (mn(θ′), s)ds > −
∫ θ′

θ
hθ(q(θ

′), θ′) + Cnθ (mn(θ′), θ′)ds = 0

(46)

The first inequality holds because U(θ) ≥ 0 = U(θ′) The last equality holds because θ′ ∈ [θ̂n, θ]

and so U ′(θ′) = −hθ(q(θ′), θ′) − Cnθ (mn(θ′), θ′) = 0, establishing the incentive compatibility

of our mechanism for this case.
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Next, suppose that θ, θ′ ∈ [θ, θ̂n]. Over this region, the solution is {qSB(θ),mn(F (θ), θ), F (θ)},
and incentive compatibility holds if qSB(θ) is decreasing in θ, and mn(F (θ), θ) is increas-

ing in θ (Guesnerie and Laffont, 1984, Theorem 2). That qSB(θ) is decreasing in θ follows

from Assumption 4(i). Next, as a maximizer of the Hamiltonian H, mn(F (θ), θ) minimizes

Cn(mn, θ) + F (θ)
f(θ)C

n
θ (mn, θ). By Assumption 4(ii), this objective has strictly increasing dif-

ferences in (mn, θ), and is supermodular in mn. Therefore, mn(F (θ), θ) is increasing in θ,

establishing incentive compatibility in this case.

Finally, let us show that incentive constraints hold for any pair (θ, θ′) such that θ ∈ (θ̂, 1]

and θ′ ∈ [θ, θ̂]. Let us rewrite the left-hand side of (45) as follows:

U(θ)− U(θ′) + h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ′)− Cn(mn(θ′), θ′) =

U(θ)− U(θ̂) +
(
h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ̂)− Cn(mn(θ′), θ̂)

)
+

−
(
U(θ′)− U(θ̂)

)
+
(
h(q(θ′), θ̂) + Cn(mn(θ′), θ̂)− h(q(θ′), θ′)− Cn(mn(θ′), θ′)

)
(47)

To confirm that the incentive constraint between θ and θ′ holds, we need to show that the

expression in (47) is nonnegative. To this end, we will establish separately that both the

second line and the third line in (47) are nonnegative. Start with the second line. We have

U(θ) = U(θ̂) = 0. Further, consider the expression in brackets in the second line. We have:

h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ̂)− Cn(mn(θ′), θ̂) =

∫ θ

θ̂
hθ(q(θ

′), s) + Cnθ (mn(θ′), s)ds ≥∫ θ

θ̂
hθ(q(θ

′), θ̂n) + Cnθ (mn(θ′), θ̂n)ds >

∫ θ

θ̂
hθ(q(θ̂), θ̂) + Cnθ (mn(θ̂), θ̂n)ds = 0. (48)

The first inequality in (48) holds because hθθ ≥ 0 and Cnθθ > 0. The second inequality holds

because q(θ′) > q(θ̂) and mn(θ′) < mn(θ̂) (as established above in this Claim), while hθq > 0

and Cn(mn, θ) has strictly decreasing differences in (mn, θ). The last equality holds because

by Claim 8 hθ(q(θ̂), θ̂) + Cnθ (mn(θ̂), θ̂) = 0. So, the second line in (47) is nonnegative.

Now consider the third line in (47). We have:

−
(
U(θ′)− U(θ̂)

)
+
(
h(q(θ′), θ̂) + Cn(mn(θ′), θ̂)− h(q(θ′), θ′)− Cn(mn(θ′), θ′)

)
=

−
∫ θ̂

θ′
hθ(q(s), s) + Cnθ (mn(s), s)ds+

∫ θ̂n

θ′
hθ(q(θ

′), s) + Cnθ (mn(θ′), s)ds =∫ θ̂

θ′
(hθ(q(θ

′), s)− hθ(q(s), s)) +
(
Cnθ (mn(θ′), s)− Cnθ (mn(s), s)

)
ds > 0 (49)

The first equality holds because U ′(θ) = −hθ(q(θ), θ) − Cnθ (mn(θ), θ). The inequality holds

because, as shown in this Claim, q(θ′) > q(s) and mn(θ′) < mn(s) for all s ∈ (θ′, θ̂n], while

hθq > 0 and Cn(mn, θ) has decreasing differences in (mn, θ). So, (47) is nonnegative. Q.E.D.
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Proof of Lemma 1: Let us show that σ̆′(θ) ≤ f(θ). By definition, σ̆(θ) satisfies

U ′(σ̆(θ), θ) = 0, and so U ′σσ̆
′(θ) + U ′θ = 0. Because U ′σ > 0, σ̆′(θ) ≤ f(θ) if and only if

U ′σ(σ̆(θ), θ)f(θ) + U ′θ(σ̆(θ), θ) ≥ 0. (50)

Recall that U ′(σ, θ) = −hθ(q(σ, θ), θ) − Cnθ (mn(σ, θ), θ). Hence, U ′σ = −hqθqσ − Cnθmmn
σ and

U ′θ = hqθqθ − hθθ − Cnθmmn
θ − Cnθθ. Thus (50) is equivalent to

−hqθ[qσf + qθ]− hθθ − Cnθm[mn
σf + mn

θ ]− Cnθθ ≥ 0 (51)

So it is sufficient to verify that the assumptions of the Lemma guarantee that the inequality

(51) holds. In fact, we will show that hqθ[qσf + qθ] + hθθ ≤ 0 and Cnθm[mn
σf + mn

θ ] +Cnθθ ≤ 0.

To this effect, let us first calculate qσ and qθ. As a maximizer of (42), q(σ, θ) satisfies the

first-order condition v′(q)− hq(q, θ)− σ
f(θ)hqθ(q, θ) = 0, from which it follows that:(

v′′(q)− hqq −
σ

f
hqqθ

)
qσf − hqθ = 0(

v′′(q)− hqq −
σ

f
hqqθ

)
qθ − hqθ

(
1− σf ′

f2

)
− σ

f
hqθθ = 0

Because q(σ, θ) is a maximizer, the second order condition v′′(q)− hqq − σ
f hqqθ ≤ 0 holds.

Consequently, the inequality hqθ[qσf + qθ] + hθθ ≤ 0 is equivalent to

hqθ

[
hqθ

(
2− σf ′

f2

)
+
σ

f
hqθθ

]
+ hθθ[v

′′(q)− hqq −
σ

f
hqqθ] ≥ 0 (52)

The second term in (52) is positive because hθθ ≤ 0 by assumption of the Lemma.

Next, 1− σf ′

f2
> 0. This is immediate if f ′ ≤ 0. If f ′ > 0 then, since F (θ)

f(θ) is increasing by

assumption, it follows that 1− σf ′

f2
≥ 1− Ff ′

f2
= 1−

(
F
f

)′
> 0. So the assumption that hqθ ≥ 0

and hqθθ ≥ 0 also guarantees that the first term in (52) is positive.

Similar algebraic steps establish that Cnθm[mn
σf + mn

θ ] + Cnθθ ≤ 0 under the conditions of

the Lemma.

Proof of Theorem 6: First, we claim that there exists K such that σ(θ, n) ≤ K
n . Since

∂Cn

∂mi
(γi(θ),m

n
−i, θ) = 0 , it follows from the mean value Theorem that ∂Cn

∂mi
(mi,m

n
−i, θ) =

∂2Cn

∂m2
i

(m̄i,m
n
−i, θ)(mi − γi(θ)) for some m̄i ∈ (mi, γi). From (39) we then have:

mi(θ)− γi(θ) = −σ(θ, n)
∂2Cn

∂θ∂mi
(mn(θ), θ)

∂2Cn

∂m2
i

(m̄i,mn
−i(θ), θ)

(53)

Using the fact that Cnθ (γn(θ), θ) = 0, and applying the mean value Theorem once more yields:

Cnθ (mn(θ), θ) =
n∑
i=1

∂2Cn

∂θ∂mi
(m̄n, θ)(mi(θ)− γi(θ)), (54)
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where m̄n = γn(θ) + ε(θ)(mn(θ) − γn(θ)), for some ε(θ) ∈ (0, 1). Recall that by Claim 2 of

Theorem 5 σ(θ, n) ≥ 0. Using the assumption that 0 ≤ ∂2Cn

∂m2
i
≤ v̄,

∣∣∣ ∂2Cn∂θ∂mi

∣∣∣ ≥ v > 0, (53) and

(54) then yield:

Cnθ (mn(θ), θ) ≤ −nσ(θ, n)
v2

v̄
(55)

Next, hθ(q(θ), θ) ≤ hθ(q
FB(θ), θ) ≤ qFB(θ) maxhqθ, where the first inequality follows from

hqθ > 0, and the second inequality holds because hθ(0, θ) = 0 and qFB(θ) is decreasing in θ.

Since U ′(θ) ≤ 0 on the interval [θ, θ], equation (36) implies

0 ≥ U ′(θ) = −hθ(q(θ), θ)− Cnθ (mn(θ), θ) ≥ −qFB(θ) maxhqθ + nσ(θ, n)
v2

v̄
.

Setting K = v̄qFB(θ)
v2

maxhqθ then establishes the claim.

By (53) we have mi(θ)− γi(θ) ≤ σ(θ, n) v̄v ≤
K
n
v̄
v . Furthermore, by (38) we have

σ(θ, n)hqθ(q(θ), θ) = {vq(q(θ))−hq(q (θ), θ)}f(θ) = f(θ)(vqq(q1(θ))−hqq(q1(θ), θ)(q(θ)−qFB(θ)),

for some q1(θ) ∈ (q(θ), qFB(θ)). Hence qFB(θ) − q(θ) ≤ σ(θ, n)M ≤ KM
n , where M =

maxhqθ
min f(θ)×min |vqq−hqq | . Hence q(θ)→ qFB(θ) and mi(θ)→ γi(θ) uniformly in θ.

Next, recall that qSB(θ̂(n)) = q(θ̂(n)) for all n. Hence we have:

qFB(θ̂(n))− qSB(θ̂(n)) =
F (θ̂(n))

f(θ̂(n))

hqθ
|vqq − hqq|

(q2(θ̂(n)), θ̂(n) ≤ KM

n
,

for some q2(θ̂(n)) ∈ (qSB(θ̂(n)), qFB(θ̂(n)). Since F (θ̂(n)) ≥
(
θ̂(n)− θ

)
minθ∈[θ,θ̂(n)] f(θ), we

have θ̂(n)− θ ≤ KMP
n , where P = max f(θ)

min f(θ)
min |vqq−hqq|

maxhqθ
. Thus θ̂(n)→ θ.

Since U(θ) is decreasing and U(θ) = 0 for all θ ∈ [θ̂n(n), θ], we have:

U(θ) ≤ U(θ) ≤ (θ̂n(n)− θ) max
θ∈[θ,θ̂n(n)]

|U ′(θ)| ≤ (θ̂n(n)− θ) max
θ∈[θ,θ̂n(n)]

hθ(q(θ), θ) ≤
KMPQ

n
,

where Q = max
θ∈[θ,θ̂n(n)]

hqθ(q(θ), θ). Hence U(θ)→ 0 uniformly in θ.

Finally, since Cn(γn(θ), θ) = 0 and Cnθ (γn(θ), θ) = 0, a Taylor series expansion yields:

Cn(mn(θ), θ) =
n∑
i=1

(mi − γi(θ))2

2

∂2Cn

∂m2
i

(mn, θ) ≤ v̄

2

n∑
i=1

(mi − γi(θ))2 ≤ 1

n

K2v̄3

v2
(56)

where mn ∈ (mn(θ), γn(θ)). Thus Cn(mn(θ), θ)→ 0, uniformly in θ. Q.E.D.

Proof of Lemma 2: Let us first show that W (n) is strictly concave. Since the opti-

mal mechanism is unique, W (n) is continuously differentiable and (1999, p. 217), dW (n)
dn =∫ θ̄

θ
∂H
∂n (q,m,U, σ, n, θ)dθ.
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By the first-order condition (39), we have
cmθ(mni (θ),θ)
cm(mni (θ),θ) =

cmθ(mnj (θ),θ)

cm(mnj (θ),θ) for all i, j ∈ {1, ..., n}.
So, the assumption that cmmcmθ − cmmθcm < 0 implies that the optimal mn

i (θ) is unique and

is the same for all i, so we can drop the subscript i and denote the optimal message by mn(θ).

Using equation (37) yields ∂H
∂n = −c(mn(θ), θ)f(θ) − σ(θ)cθ(m

n(θ), θ). Substituting for

σ(θ) from (39) we then obtain ∂H
∂n =

(
cθcm
cmθ
− c
)
f , so we have:

dW (n)

dn
=

∫ θ̄

θ

(
cθ(m

n(θ), θ)cm(mn(θ), θ)

cmθ(mn(θ), θ)
− c(mn(θ), θ)

)
f(θ)dθ (57)

Thus, W (n) is concave in n if
(
cθcm
cmθ
− c
)

decreases in n. Note that

d

dn

(
cθcm
cmθ

− c
)

=
cθ
c2
mθ

(cmmcmθ − cmmθcm)
∂mn

∂n
. (58)

Now, from the first-order condition (39) and Claim 7 in Theorem 5, mn(θ) satisfies

cm(mn(θ), θ)f(θ) + cmθ(m
n(θ), θ)F (θ) = 0 for θ ∈ [θ, θ̂n(n)). So, ∂mn(θ)

∂n = 0 for θ ∈ [θ, θ̂n).

Also, hθ(q(θ), θ) + ncθ(m
n(θ), θ) = 0 for all θ ∈ [θ̂n, θ]. Since hqθ > 0 and cmθ < 0,

hθ(q(θ), θ) + ncθ(m
n(θ), θ) = 0 can hold only if ∂mn(θ)

∂n < 0 for θ ∈ [θ̂n, θ]. Also, θ̂n is

decreasing in n. Finally, by Theorem 5 mn(θ) > γ(θ), so cθ < 0. It then follows from the

assumption cmmcmθ − cmmθcm < 0 that (58) is strictly negative on [θ, θ̂n) and equal to zero

on [θ̂n, θ]. So W (n) is strictly concave.

Now let η(m, θ) = cθcm
cmθ
− c, and observe that c(γ(θ), θ) = 0 and cθ(γ(θ), θ) = 0 for every θ,

so that η(γ(θ), θ) = 0. Furthermore, since cθ(m, θ) < 0 for m > γ(θ) and cmmcmθ− cmmθcm <

0, we have ηm(m, θ) > 0 and hence η(m, θ) > 0 for m > γ(θ). Since mn(θ) > γ(θ), it follows

that the integrand in (57) is strictly positive for all θ, so W (n) is strictly increasing in n.

To see that K > 0, note that φ(m, θ) = cθcm
cmθc
−1 is continuous in m, and satisfies φ(m, θ) =

η(m,θ)
c(m,θ) > 0 for all m > γ(θ). Furthermore, applying l’Hospital’s rule, we have

lim
m→γ(θ)

φ(m, θ) = lim
m→γ(θ)

cmθcm + cθcmm
cmθcm + cmmθc

= lim
m→γ(θ)

cmθ + cθ
cm
cmm

cmθ + c
cm
cmmθ

= 2,

where the final inequality holds because by l’Hospital’s rule we have limm→γ(θ)
cθ
cm

= cmθ
cmm

and

limm→γ(θ)
c
cm

= limm→γ(θ)
cm
cmm

= 0.

Thus φ(m, θ) is continuous at m = γ(θ), and satisfies φ(γ(θ), θ) = 2. It follows that K,

the minimum of φ(m, θ) over the set D, is strictly positive.

Finally, it follows from Theorem 5 that mn(θ) ∈ [γ(θ), γ(θ)]. The definition of K and K

then imply that Kc ≤ cmcθ
cmθ
− c ≤ Kc for all θ, and so

0 < K

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ ≤ dW (n)

dn
= G ≤ K

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ.

Q.E.D.
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