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8 Appendix. Multi-valued targeted type

This appendix characterize the optimal mechanism when the targeted type τ(.) may be

multi-valued. Two additional issues needs to be addressed in this case. First, with multi-

valued targeted types, τ(.) is a correspondence which can be equivalently represented as a

discontinuous function with upwards jumps. Such jumps cannot be characterized by the

following differential equation derived in Theorem 7 in the main paper:

τ̇ k(θ) =
f(θ)[uq(Q

k, τ k−1)− uq(Q
k, τ k)]

f(τ k)uq(Qk, τ k)

k−1∏
s=1

uq(Q
s, τ s−1)

uq(Qs, τ s)
(θ), k ∈ {1, ...,M(θ)}, (72)

which applies only where τ(.) is continuous. Second, the image τ(θ) need not be convex for

all θ, and so one would have to determine the boundaries of subintervals in [min τ(θ̂),max τ(1)]

where the law of motion is:

[uq(q(τ(θ)), θ)− uq(q(τ(θ)), τ(θ))]q̇(τ(θ)) = uθ(q(τ(θ)), τ(θ))− 1(τ(θ) ≥ θ̂)uθ(q(τ(τ(θ))), τ(θ)).

(73)

In order to tackle these issues, we introduce and work with a concept of an “attracted

type,” a generalized inverse of τ . Specifically, let τ = min τ(θ̂) and τ = max τ(1). The

attracted type function β : [τ , τ ] → [θ̂, 1] is defined as follows:

β(θ) = θ′ if θ ∈ [min τ(θ′),max τ(θ′)].

This definition implies that β(θ) = τ−1(θ) if τ−1(θ) is non-empty. If τ−1(θ) is empty, then
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β(θ) a unique θ′ s.t. min τ(θ′) < θ < max τ(θ′). Since τ(θ) is strictly increasing and upper

hemicontinuous by Theorem 4, β(θ) is well-defined, weakly increasing and continuous.12

To describe the chains of attracted types connected by binding incentive constraints, we

use the concept of higher-order attracted types in a similar fashion to higher-order targeted

types. Specifically, for θ ∈ [τ , θ̂] let β0(θ) = θ and βk(θ) = β(βk−1(θ)) for k ≥ 1. Let

R(θ) be the number of elements in the chain of attracted types, so that βk(θ) exists for

k = 1, ..., R(θ)− 1. The maximal length of the chain of attracted types is R = R(τ). Since

β(.) is continuous and increasing, it maps the interval [βk−1(θ), βk(θ)] onto the adjacent

interval [βk(θ), βk+1(θ)].

Then the following condition must hold for θ ∈ [τ , τ ] in the optimal mechanism:

uq(q(θ), θ)f(θ) = [uq(q(θ), β(θ))− uq(q(θ), θ)]
s∑

k=1

f(βk(θ))β̇k(θ), (74)

where s is such that βs(θ) ∈ (max τ(1), 1].

A formal proof of this claim is provided in the proof of Theorem 11. Condition (74) is

the same as the optimality condition (13) in Theorem 6 in the paper, but restated using

attracted type function β(.). Intuitively, this condition reflects the optimal tradeoff between

the marginal efficiency gain from raising q(θ) and the marginal cost of information rent that

the principal has to provide to the types in every predecessor of θ in the chain of attracted

types βk(θ) for k = 1, ..., s.

Our next step is to generalize the optimal “law of motion” of q(θ) to the current case.

Note that β−1(θ) is well-defined as the convex hull of τ(θ). If θ ∈ τ(β(θ)) i.e., the incentive

constraint IC(β(θ), θ) is binding, for all θ in some open interval, then the corresponding

law of motion, which we denote by q̇IC(.), is obtained by rewriting (73) which yields:

q̇IC(θ) ≡ uθ(q(θ), θ)− 1(θ ≥ θ̂)uθ(q(min β−1(θ)), θ)

uq(q(θ), β(θ))− uq(q(θ), θ)
. (75)

On the other hand, by part 4 of Theorem 4 in the main paper, q(θ) = qfb(θ) for all

θ ∈ [θ1, θ2] where θ1 and θ2 are the boundaries of the maximal interval on which β(.) is

constant (put otherwise, τ(β(θ)) is multi-valued. So, q̇(θ) = q̇fb(θ).

12To illustrate the relationship between τ and β, consider the following example: θ̂ = 0.6, τ(θ) = θ − 0.3

if θ ∈ [0.6, 0.8), τ(θ) = {0.5, 0.6} if θ = 0.8, τ(θ) = θ − 0.2 if θ ∈ (0.8, 1]. The corresponding β function is:

β(θ) = θ + 0.3 if θ ∈ [0.3, 0.5), β(θ) = 0.8 if θ ∈ [0.5, 0.6], β(θ) = θ + 0.2 if θ ∈ (0.6, 0.8]. Particularly, note

that a type in (0.5, 0.6) is not in the image of τ(.), but β(θ) = 0.8 for all θ ∈ [0.5, 0.6].
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Thus, q̇(θ) = q̇IC(θ) when IC(β(θ), θ) is binding, and q̇(θ) = q̇fb(θ) when it is not

binding. To identify which of these two cases applies, consider the payoff of type θ when

she imitates type θ′, U(θ′, θ) = u(q(θ), θ′)−u(q(θ), θ)−C+
∫ max{θ,θ̂}
θ̂

uθ(q(min β−1(s)), s)ds.

Then for θ ∈ [τ ,max τ(1)], let I(θ) =
∫ θ

τ
U2(β(x), x)dx =

=

∫ θ

τ
[uq(q(x), β(x))− uq(q(x), x)]q̇(x)− uθ(q(x), x) + 1(x ≥ θ̂)uθ(q(minβ−1(x)), x)dx. (76)

As shown in the proof of Theorem 11 stated below, I(θ) tracks the slackness of IC(β(θ), θ).

Specifically, if I(θ) = 0, then IC(β(θ), θ) is binding; if I(θ) < 0, IC(β(θ), θ) is slack.

Therefore, the optimal law of motion of q(θ) can be stated as follows:

q̇(θ) =


q̇IC(θ) if q(θ) < qfb(θ),

q̇fb(θ) if q(θ) = qfb(θ) and I(θ) < 0,

min{q̇IC(θ), q̇fb(θ)} if q(θ) = qfb(θ) and I(θ) = 0.

(77)

The logic behind (77) is that, when q(θ) is below the first-best, the incentive constraint

IC(β(θ), θ) must be binding, and so q̇(θ) = q̇IC(θ). On the other hand, if I(θ) < 0,

then IC(β(θ), θ) is slack and the optimal quantity must stay at the first-best level in a

neighborhood of θ. This case arises when τ(.) is non-convex.

When I(θ) = 0 and q(θ) = qfb(θ), we are in a boundary situation with binding

IC(β(θ), θ). In this case, if q̇IC(θ) > q̇fb(θ), the types in a neighborhood of θ do not have

IC constraints binding towards them and the quantities remains at the first-best level. On

the other hand, if q̇IC(θ) < q̇fb(θ), the types in a neighborhood of θ do have IC constraints

binding towards , and the law of motion of q is given by (75).

Further, the boundary conditions for β(.) and q(.) on the interval [τ , τ ] where τ =

min{θ : β(θ) ̸= ∅}, τ = max{θ : β(θ) = 1}, are as follows:

βk(τ) = βk−1(β(τ)), (78)

q(τ) = qfb(τ), (79)

q(τ) = qfb(τ), (80)

u(qfb(τ), β(τ))− u(qfb(τ), τ)− C = 0. (81)

The necessary conditions for optimality are presented in the following Theorem:

3



Theorem 11 The following conditions must hold in an optimal mechanism (q(.), t(.)):

(i) The optimality condition (74);

(ii) The law of motion (77);

(iii) The boundary conditions (78) - (81).

We can now use the optimality conditions of Theorem 11, in particular, (74), to obtain the

differential equations characterizing the attracted type functions βk(.) and the corresponding

quantities. To state them, let θ̂ = β(τ), Gk(θ) = q(βk(θ)) for θ ∈ [τ , θ̂], so that Gk(.) is

the quantity received by the k-th order attracted type βk(θ). Also, with a slight abuse of

notation, let L(θ, k) =
∏k−1

i=1
uq(Gi(θ)),βi(θ))

uq(Gi(θ),βi+1(θ))
, with L(θ, 1) = 1 by convention. Then we have:

Corollary 2 In an optimal mechanism, for θ ∈ [τ , θ̂] and s(θ) ∈ N such that βs(θ)(θ) ∈
[min τ(1), 1] we have:

β̇k(θ) =


f(θ)uq(G0(θ),θ))[uq(Gk(θ),βk+1(θ))−uq(Gk(θ),βk(θ))]

f(βk(θ))uq(Gk(θ),βk+1(θ))[uq(G0(θ),β1(θ))−uq(G0(θ),θ)]
L(θ, k) if k < s(θ);

f(θ)uq(G0(θ),θ)
f(βk(θ))[uq(G0(θ),β1(θ))−uq(G0(θ),θ)]

L(θ, k) if k = s(θ);
(82)

Also, for k = 0, ..., s(θ)− 1, Ġk(θ) =

uθ(G
0(θ),θ))

uq(G0(θ),β1(θ))−uq(G0(θ),θ)
if G0(θ) < qfb(θ)), k = 0;

−uθq(G
k(θ),βk(θ))

uqq(Gk(θ),βk(θ))
G0(θ) = qfb(θ), I(θ) < 0, k = 0;

f(θ)uq(G0(θ),θ))[uθ(G
k(θ),βk(θ))−uθ(G

k−1(θ),βk(θ))]
f(βk(θ))[uq(G0(θ),β1(θ))−uq(G0(θ),θ)]uq(Gk(θ),βk+1(θ))

L(θ, k) Gk(θ) < qfb(βk(θ)), k ≥ 1;

−f(θ)uq(G0(θ),θ))[uq(Gk(θ),βk+1(θ))−uq(Gk(θ),βk(θ))]uθq(G
k(θ),βk(θ))

f(βk(θ))[uq(G0(θ),β1(θ))−uq(G0(θ),θ)]uq(Gk(θ),βk+1(θ))uqq(Gk(θ),βk(θ))
L(θ, k) Gk(θ) = qfb(βk(θ)), I(βk(θ)) < 0, k ≥ 1;

β̇k(θ)min{q̇IC(βk(θ)), q̇fb(βk(θ))} Gk(θ) = qfb(βk(θ)), I(βk(θ)) = 0.

(83)

Differential equations (82) and (83) describe the laws of motion of the high-order at-

tracted types βk and their corresponding quantities Gk. Together with the boundary con-

ditions (78)- (81), these differential equations provide a characterization of the optimal

mechanism when multi-valued targeted types exist. Particularly, consider the law of mo-

tion of quantities (83). Its first two cases specify the law of motion q̇IC that applies when

the quantities are below the first-best and is derived from the binding incentive constraint

towards the respective types. The next two cases in (83) specify the law of motion for types
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who do not have “attracted types.” In these cases, the law of motion is the rate that keeps

the quantities at the first-best level. The last case of condition (83) specifies the law of

motion for such θ where both the quantity is at the first-best and there is a type attracted

to θ. The incentive constraints are binding, which is the smaller of q̇IC and q̇fb, as the

quantities cannot exceed the first-best.

Proof of Theorem 11 and Corollary 2:

First, the boundary conditions in part (iii) hold by the definitions of τ , τ , and θ̂.

Next, we derive the optimality condition (74) in the following Lemma. Note that this

condition is equivalent to condition (13).

Lemma 18 In an optimal mechanism, βk(.) is differentiable at θ for all k ∈ {1, ..., s} and

equation (74) holds for any θ ∈ [min τ(θ̂),max τ(1)] and s such that βs(θ) ∈ [min τ(1), 1].

Proof of Lemma 18: The proof is by contradiction. So, suppose that there exists θ̃ ∈
[min τ(θ̂),max τ(1)] with differentiable βk(θ̃), k = 1, ..., s, such that

uq(q(θ̃), θ̃)f(θ̃) > [uq(q(θ̃), β(θ̃))− uq(q(θ̃), θ̃)]
s∑

k=1

f(βk(θ̃))β̇k(θ̃). (84)

We will show that in this case the mechanism is not optimal, as the principal can get a

higher profit by increasing the quantities assigned to the types around θ̃ and collecting the

additional revenue generated thereby, while providing increased information rents to types

around βk(θ̃), k = 1, ..., s. The case when this inequality has the opposite sign is similar.

The proof proceeds through three steps. In Step 1, we construct an alternative mech-

anism (q̃(.), t̃(.)). In Steps 2 and 3 we show that this alternative mechanism is incentive

compatible and more profitable, respectively, for the principal than the original one, when

the quantity changes for the types near θ̃ are sufficiently small.

Step 1. Constructing an Alternative Mechanism (q̃(.), t̃(.)).

Inequality (84) implies that there exists µ > 0 such that

uq(q(θ̃), θ̃)f(θ̃)− [uq(q(θ̃), β(θ̃))− uq(q(θ̃), θ̃)]
s∑

k=1

f(βk(θ̃))β̇k(θ̃)− µ > 0. (85)

Note that the inequality (85) implies that q(θ̃) < qfb(θ̃).

Now, for ϵ > 0 small enough and k = 0, ..., s, let Θk(ϵ) = [βk(θ̃ − ϵ)− ( δτ
2
)s−kϵ2, βk(θ̃ +

ϵ) + ( δτ
2
)s−kϵ2]. Since βk(θ̃) < βk+1(θ̃) for all k ∈ {0, ..., s − 1}, Lemma 12 implies that

Θk(ϵ) ∪Θk + 1(ϵ) for all k ∈ {0, ..., s− 1}, which we now assume.
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The alternative mechanism (q̃(.), t̃(.)) differs from the original one, (q(.), t(.)), only as

follows: (i) for θ ∈ Θ0(ϵ), q̃(θ) = q(θ) + ϵ5 and t̃(θ) = t(θ) + u(q(θ) + ϵ5, θ)− u(q(θ), θ); (ii)

for θ ∈ ∪s
k=1Θk(ϵ), q̃(θ) = q(θ) and t̃(θ) = t(θ) −∆(ϵ), where ∆(ϵ) ≡ maxθ′∈Θ0(ϵ) u(q(θ

′) +

ϵ5, θ1) − u(q(θ′), θ1) − u(q(θ′) + ϵ5, θ′) + u(q(θ′), θ′) and θ1 = maxΘ1(ϵ). So, ∆(ϵ) > 0 and

limϵ→0∆(ϵ) = 0. Let Ṽ (θ) be the net payoff of type θ in (q̃(.), t̃(.)).

Step 2. Establishing individual rationality and incentive compatibility of the

alternative mechanism for small ϵ > 0.

IR constraints hold in (q̃(.), t̃(.)) because Ṽ (θ) > V (θ) for θ ∈ ∪s
k=1Θk(ϵ), and Ṽ (θ) =

V (θ) for all θ ∈ [0, 1] \ ∪s
k=1Θk(ϵ).

Now, let us focus on incentive constraints in the mechanism (q̃(.), t̃(.)), which we denote

by ˜IC(θ, θ′) for (θ, θ′) ∈ [0, 1]2. First, if θ ∈ [0, 1] and θ′ ̸∈ ∪s
k=0Θk(ϵ), then ˜IC(θ, θ′) holds

because Ṽ (θ) ≥ V (θ), q̃(θ′) = q(θ′), t̃(θ′) = t(θ′) and IC(θ, θ′) holds.

Second, if θ ∈ [0, 1] and θ′ ∈ Θs(ϵ), then for small enough ϵ, τ−1(θ′) = ∅ since βs+1(θ̃) =

∅. Therefore, IC(θ, θ′) is slack in the original mechanism. Let δ > 0 be the minimal

slack over all θ ∈ [0, 1] and all θ′ ∈ Θs(ϵ). Note that Ṽ (θ) ≥ V (θ) for all θ ∈ [0, 1], and

Ṽ (θ′) = V (θ′)+∆(ϵ) for θ′ ∈ Θs(ϵ). So, ˜IC(θ, θ′) holds for sufficiently small ϵ s.t. ∆(ϵ) ≤ δ.

Third, ˜IC(θ, θ′) holds for θ ∈ Θ1(ϵ) and θ′ ∈ Θ0(ϵ) because we have:

Ṽ (θ) = V (θ) + ∆(ϵ) ≥ u(q(θ′), θ)− t(θ′)− C +∆(ϵ) ≥ u(q(θ′), θ)− t(θ′)− C+

[u(q(θ′) + ϵ5, θ)− u(q(θ′) + ϵ5, θ′)]− [u(q(θ′), θ)− u(q(θ′), θ′)] = u(q̃(θ′), θ)− t̃(θ′)− C,

where the first equality holds by construction; the first inequality holds by incentive com-

patibility of the original mechanism; the second inequality holds by definition of ∆(ϵ), and

because θ ≤ θ1 and uθq > 0; the last equality holds by definition of q̃(θ′) and t̃(θ′).

Fourth, if θ ∈ ∪s
k=1Θk(ϵ) and θ′ ∈ ∪s−1

k=1Θk(ϵ), then Ṽ (θ) = V (θ) + ∆(ϵ) and Ṽ (θ′) =

V (θ′) + ∆(ϵ) since q̃(θ) = q(θ), t̃(θ) = t(θ) −∆(ϵ), q̃(θ′) = q(θ′), and t̃(θ′) = t(θ′) −∆(ϵ).

So, ˜IC(θ, θ′) holds because IC(θ, θ′) holds.

Fifth, consider ˜IC(θ, θ′) s.t. θ ̸∈ Θ1(ϵ), θ
′ ∈ Θ0(ϵ). Now, suppose that

θ+β(θ′)
2

≥ θ̂ in the
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original mechanism. Then applying Lemma 13 in the main paper, we get:

Ṽ (θ) = V (θ) > u(q(θ′), θ)− t(θ′)− C + δV

(
δτ
2

)2(s−1)
ϵ4

16
= u(q̃(θ′), θ)− t̃(θ′)− C

+ δV

(
δτ
2

)2(s−1)
ϵ4

16
− [u(q(θ′) + ϵ5, θ)− u(q(θ′), θ)− u(q(θ′) + ϵ5, θ′) + u(q(θ′), θ′)]

> u(q̃(θ′), θ)− t̃(θ′)− C,

where the first inequality holds because θ′ ∈ Θ0(ϵ) ≡ [θ̃ − ϵ − ( δτ
2
)sϵ2, θ̃ + ϵ + ( δτ

2
)sϵ2]

and θ − θ′ ≥ δτ [β(θ) − β(θ′)] by Lemma 12 in the main paper. So, β(θ′) ∈ [β(θ̃ − ϵ) −
1
2
( δτ
2
)s−1ϵ2, β(θ̃+ ϵ) + 1

2
( δτ
2
)s−1ϵ2]. This and the fact that θ ̸∈ Θ1(ϵ) imply that |θ− β(θ′)| ≥

1
2
( δτ
2
)s−1ϵ2. Using the latter in

V (θ2)− U(θ′1|θ2) ≥

δV
(θ2−θ1)2

4
if θ1+θ2

2
≥ θ̂

θ1−θ2
2

minθ uθ(q(θ
′
1), θ) if θ1+θ2

2
< θ̂.

(86)

of Lemma 13 in the main paper yields V (θ)− U(θ′|θ) ≥ δV (
δτ
2
)2(s−1) ϵ4

16
for small enough ϵ.

The second equality above holds by definitions of q̃(θ′) and t̃(θ′). The last inequality holds

for small enough ϵ.

Now, suppose that θ+β(θ′)
2

≤ θ̂ in the original mechanism. Since β(θ′) > θ̂, it follows

that θ < θ̂ and so τ(θ) = ∅ and IC(θ, θ′) is slack in the original mechanism. Hence, when ϵ

is sufficiently small, ˜IC(θ, θ′) is slack in the modified mechanism as well.

Sixth, suppose that θ ̸∈ ∪s
k=1Θk(ϵ) and θ′ ∈ Θr(ϵ), r = 1, ..., s − 1, and ϵ is sufficiently

small. Let us start with the case when θ+β(θ′)
2

≥ θ̂ in the original mechanism. We have:

Ṽ (θ) = V (θ) > u(q(θ′), θ)− t(θ′)− C + δV

(
δτ
2

)2(r−1)
ϵ4

16

= u(q̃(θ′), θ)− t̃(θ′)− C + δV δτ (
δτ
2
)2(r−1) ϵ

4

16
−∆(ϵ) > u(q̃(θ′), θ)− t̃(θ′)− C,

where the first inequality holds because θ′ ∈ [βr(θ̃ − ϵ) − ( δτ
2
)s−rϵ2, βr(θ̃ + ϵ) + ( δτ

2
)s−rϵ2],

and θ− θ′ ≥ δτ [β(θ)−β(θ′)] by Lemma 12. So, β(θ′) ∈ [βr+1(θ̃− ϵ)− 1
2
( δτ
2
)s−r−1ϵ2, βr+1(θ̃+

ϵ) + 1
2
( δτ
2
)s−r−1ϵ2]. Therefore, |θ− β(θ′)| ≥ 1

2
( δτ
2
)r−1ϵ2. Hence, inequality (86) in Lemma 13

implies that V (θ)− U(θ′|θ) ≥ δV (
δτ
2
)2(r−1) ϵ4

16
for small enough ϵ. The second equality holds

by definitions of q̃(θ′) and t̃(θ′). The last inequality holds for small enough ϵ.
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Now, suppose that θ+β(θ′)
2

≤ θ̂ in the original mechanism. Since β(θ′) > θ̂, it follows

that θ < θ̂ and so τ(θ) = ∅ and IC(θ, θ′) is slack in the original mechanism. Hence, when ϵ

is sufficiently small, ˜IC(θ, θ′) is slack in the modified mechanism as well.

Seventh, suppose that {θ, θ′} ⊂ Θ0(ϵ). If θ > θ′. Since V (.) and q(.) are continuous,

Ṽ (.) and q̃(.) are continuous on Θ0(ϵ), and so ˜IC(θ, θ′) holds when ϵ is sufficiently small.

Step 3. Establishing that the mechanism (q̃(.), t̃(.)) is more profitable for the

principal than the original mechanism.

The change in seller’s profits from switching to the new mechanism is equal to

Π(ϵ) =

∫
Θ0(ϵ)

[u(q(θ) + ϵ5, θ)− u(q(θ), θ)]f(θ)dθ −∆(ϵ)
s∑

k=1

∫
Θk(ϵ)

f(θ)dθ.

Hence,

lim
ϵ→0

Π(ϵ)

ϵ6
= lim

ϵ→0

1

ϵ

(∫
Θ0(ϵ)

uq(q(θ), θ)f(θ)dθ − max
θ′∈Θ0(ϵ)

[uq(q(θ
′), θ1)− uq(q(θ

′), θ′)]
s∑

k=1

∫
Θk(ϵ)

f(θ)dθ

)

= lim
ϵ→0

1

ϵ

(∫ θ̃+ϵ

θ̃−ϵ

uq(q(θ), θ)f(θ)dθ − max
θ′∈Θ0(ϵ)

[uq(q(θ
′), θ1)− uq(q(θ

′), θ′)]
s∑

k=1

∫ βk(θ̃+ϵ)

βk(θ̃−ϵ)

f(θ)dθ

)

= lim
ϵ→0

1

ϵ

(∫ θ̃+ϵ

θ̃−ϵ

uq(q(θ), θ)f(θ)− max
θ′∈Θ0(ϵ)

[uq(q(θ
′), θ1)− uq(q(θ

′), θ′)]
s∑

k=1

β̇k(θ)f(βk(θ))dθ

)

=2

(
uq(q(θ̃), θ̃)f(θ̃)− [uq(q(θ̃), β(θ̃))− uq(q(θ̃), θ̃)]

s∑
k=1

β̇k(θ̃)f(βk(θ̃))

)
> 2µ > 0,

where the first equality holds by definition of ∆(.). The second equality holds because Θk(ϵ)

converges to [βk(θ̃− ϵ), βk(θ̃+ ϵ)] at the same rate as ϵ2. The third equality is obtained by a

change of variables. The fourth equality holds since θ1 → β(θ̃) and Θ0(ϵ) → θ̃ as ϵ → 0; and

the first inequality holds by (85). Therefore, Π(ϵ) > 0 for small enough ϵ, which contradicts

the optimality of the original mechanism. Q.E.D.

Next, to derive the law of motion of q(.) in (77), let us prove the following Lemma.

Lemma 19 If IC(β(θ), θ), then I(θ) = 0. If IC(β(θ), θ) is slack, then I(θ) < 0.

Proof of Lemma 19: Let S = {θ ∈ [min τ(θ̂),max τ(1)] : θ ̸∈ τ(β(θ))}. That is, S is

the set of types such that IC(β(θ), θ) is slack. Since τ is upper hemicontinuous and strictly

increasing, S = ∪∞
i=1(θi, θi) where θi ≤ θi ≤ θi+1, and for any θ ∈ [min τ(θ̂),max τ(1)] \ Sk,
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IC(β(θ), θ) is binding and so U2(β(θ), θ) = 0. Also, there exists θ̃i such that β(θ) = θ̃i for

all θ ∈ [θi, θi], and IC(θ̃i, θi) and IC(θ̃i, θi) are binding.

Note that the number of intervals (θi, θi) such that IC(θ̃i, θ) is non-binding for θ ∈ (θi, θi)

is at most countable, because all such intervals are pairwise disjoint, their union is contained

in [0, 1], and, being open, each such interval contains at least one rational number, while

the number of rational numbers in an interval is countable.

Therefore, U(θ̃i, θi) = U(θ̃i, θi) > U(θ̃i, θ) for any θ ∈ (θi, θi), and hence∫ θ

θi

U2(θ̃i, s)ds

< 0 if θ ∈ (θi, θi)

= 0 if θ = θi

. (87)

Let θ0 = β(min τ(θ̂)). If IC(β(θ), θ) is binding, then θ ∈ [θi, θi+1] for i ≥ 0 and

U2(β(θ), θ) = 0. So using (87), we obtain I(θ) =
∫ θ

min τ(θ̂)
U2(β(x), x)dx = 0.

If IC(β(θ), θ) is slack, then θ ∈ (θi, θi) for some i ∈ {1, .., N}, and so

I(θ) =
∫ θ

min τ(θ̂)
U2(β(x), x)dx =

∫ θ

θi
U2(θ̃i, s)ds < 0, where the first equality holds by the defi-

nition of I(.), the second equality holds because U2(β(θ), θ) = 0 for all θ ∈ [min τ(θ̂),max τ(1)]\
Sk, and the inequality holds by (87). It follows that IC(β(θ), θ) is binding/non-binding if

I(θ) = 0/I(θ) < 0. This completes the proof of Lemma 19. Q.E.D.

Now, we are in a position to complete the derivation of the law of motion for q(.). We

need to consider three cases.

(1) Suppose that q(θ) < qfb(θ). Since q(.) is continuous by Theorem 3 in the main paper,

it follows that there exists ϵ > 0 s.t. for all θ′ ∈ (θ − ϵ, θ + ϵ), q(θ′) < qfb(θ′), and so by

Lemma 9 in the main paper, IC(β(θ′), θ′) is binding. Hence U2(β(θ), θ) = 0, and (75) must

hold i.e., q̇(θ) = q̇IC((θ).

(2) Now suppose that I(θ) < 0. Then IC(β(θ), θ) is slack by Lemma 19. By continuity

of q(.) and I(.), there exists ϵ > 0 s.t. for all θ′ ∈ (θ − ϵ, θ + ϵ), we also have I(θ′) < 0 and

hence IC(β(θ′), θ′) and q(θ′) = qfb(θ′) by Lemma 9. So q̇(θ) = q̇fb(θ).

(3) Now suppose that q(θ) = qfb(θ) and I(θ) = 0. Then we must have q̇(θ) ≤ q̇fb(θ), for

otherwise q(θ′) > qfb(θ′) for θ′ ∈ (θ, θ + ϵ) for some ϵ > 0, which would contradict Lemma

9.

Suppose also that q̇fb(θ) < q̇IC(θ). Then q̇(θ) < q̇IC(θ), and so U2(β(θ), θ) < 0. Hence,

there exists ϵ > 0 s.t. for all θ′ ∈ (θ, θ + ϵ), I(θ′) < 0 which implies that IC(β(θ′), θ′) is

slack by Lemma 19, and so q(θ′) = qfb(θ′) by Lemma 9. Hence q̇(θ) = q̇fb(θ).

9



Now suppose that q̇fb(θ) ≥ q̇IC(θ). If q̇(θ) > q̇IC(θ), then U2(β(θ), θ) > 0. Hence, there

exists ϵ > 0 s.t. for all θ′ ∈ (θ, θ + ϵ), I(θ′) > 0 which contradicts Lemma 19.

On the other hand, if q̇(θ) < q̇IC(θ), then U2(β(θ), θ) < 0. Hence, there exists ϵ > 0 s.t.

for all θ′ ∈ (θ, θ+ϵ), I(θ′) < 0 and, by Lemma 19, IC(β(θ′), θ′) is slack, and so q(θ′) = qfb(θ′)

by Lemma 9. But this contradicts q̇(θ) < q̇IC(θ) ≤ q̇fb(θ). Hence, q̇(θ) = q̇IC(θ). This

completes the derivation of the law of motion of q(.) in (77).

Finally, let us establish (83) and (82). For θ ∈ [τ , τ ], let A(θ) =
∑s

k=1 f(β
k(θ))β̇k(θ).

Then by recursion,

A(θ) =

β̇(θ)[f(β(θ)) + A(β(θ))] if β2(θ) ̸= ∅

β̇(θ)f(β(θ)) if β2(θ) = ∅
(88)

Next, let

B(θ) =
uq(q(θ), θ)

uq(q(θ), β(θ))− uq(q(θ), θ)
. (89)

The optimality condition (74) in Theorem 11 implies that

A(θ) = f(θ)B(θ) =

β̇(θ)f(β(θ))[1 +B(β(θ))] if β2(θ) ̸= ∅,

β̇(θ)f(β(θ)) if β2(θ) = ∅.
(90)

Therefore,

β̇(θ) =


f(θ)B(θ)

f(β(θ))[1+B(β(θ))]
if β2(θ) ̸= ∅

f(θ)B(θ)
f(β(θ))

if β2(θ) = ∅
(91)

Since βk(θ) =
∏k−1

i=0 β̇(β
i(θ)), we have

β̇k(θ) =


∏k−1

i=0
f(βi(θ))B(βi(θ))

f(βi+1(θ))[1+B(βi+1(θ))]
if βk+1(θ) ̸= ∅,

f(βk−1(θ))B(βk−1(θ)
f(βk(θ))

∏k−2
i=0

f(βi(θ))B(βi(θ))
f(βi+1(θ))[1+B(βi+1(θ))]

if βk+1(θ) = ∅.

Using (89) in the above and setting Qk(θ) = q(βk(θ)) yields for θ ∈ [τ , θ̂]:

β̇k(θ) =


f(θ)uq(Q0(θ),θ))[uq(Qk(θ),βk+1(θ))−uq(Qk(θ),βk(θ))]

f(βk(θ))[uq(Q0(θ),β1(θ))−uq(Q0(θ),θ)]uq(Qk(θ),βk+1(θ))

∏k−1
i=1

uq(Qi(θ)),βi(θ))

uq(Qi(θ),βi+1(θ))
if k < s(θ)

f(θ)uq(Q0(θ),θ)

f(βk(θ))[uq(Q0(θ),β1(θ))−uq(Q0(θ),θ)]

∏k−1
i=1

uq(Qi(θ)),βi(θ))

uq(Qi(θ),βi+1(θ))
if k = s(θ)

(92)

Equations (83) are derived from (74), (77), and the definition of Qk. Q.E.D.
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The optimal mechanism in the quadratic-uniform case

under an intermediate cost C

Consider the following system of ordinary differential equation system presented in section

4.4 in the main paper:

τ̇ =
θ − τ

τ −Q
, (93)

Q̇ =
Q

τ −Q
, (94)

With boundary conditions:

Q(1) = τ(1) (95)

Q(θ̂) = τ(θ̂) (96)

Q(θ̂)(θ̂ − τ(θ̂)) = C (97)

First, let us make a change of variables:

y = τ −Q, z = τ +Q (98)

Then the system (93)-(94) is equivalent to the following system:

ẏy = θ − z (99)

ż =
θ

y
− 1 (100)

Differentiating (99) yields:

ÿy + (ẏ)2 = 1− ż = 2− θ

y
(101)

Let us make another change of variables: w = y2

4
. Then (101) becomes:

ẅ(θ) = 1− θ

4
√

w(θ)
(102)

The general solution to the differential equation (102) is parametric. Specifically, let b1, b2

and b3 be some constants and t ∈ [0,∞) be a parameter. Then:

θ(t) = b1t+ b2t
√
5−1
2 + b3t

−
√

5+1
2 (103)

y2(t)

4
≡ w(t) =

(
1

2
b1t+

√
5− 1

4
b2t

√
5−1
2 −

√
5 + 1

4
b3t

−
√
5+1
2

)2

(104)
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Indeed, note that we have:

dy2(t)
4

dt
≡ dw(t)

dt
=

(
b1 +

3−
√
5

2
b2t

√
5−3
2 +

3 +
√
5

2
b3t

−
√

5+3
2

)(
1

2
b1t+

√
5− 1

4
b2t

√
5−1
2 −

√
5 + 1

4
b3t

−
√

5+1
2

)
(105)

d2 y
2(t)
4

dt2
≡ d2w(t)

dt2
=

1

2

(
b1 +

3−
√
5

2
b2t

√
5−3
2 +

3 +
√
5

2
b3t

−
√
5+3
2

)2

+

(
−7− 3

√
5

2
b2t

√
5−5
2 − 7 + 3

√
5

2
b3t

−
√
5+5
2

)(
1

2
b1t+

√
5− 1

4
b2t

√
5−1
2 −

√
5 + 1

4
b3t

−
√
5+1
2

)
(106)

θ′(t) = b1 +

√
5− 1

2
b2t

√
5−3
2 −

√
5 + 1

2
b3t

−
√
5+3
2 (107)

θ′′(t) =

√
5− 1

2

√
5− 3

2
b2t

√
5−5
2 +

√
5 + 1

2

√
5 + 3

2
b3t

−
√
5+5
2 (108)

Note that d2w
dθ2

= ẅ(t)
(θ′(t))2

− ẇ(t) θ′′

θ′(t)3
. Therefore, the ODE (102) can be rewritten as follows:

ẅ(t)

(θ′(t))2
− ẇ(t)

θ′′(t)

θ′(t)3
= 1− θ(t)

4
√

w(t)
(109)

Note that we must have 0 ≤ y < θ, since y = τ −Q, τ < θ, and the optimal quantity Q

cannot be greater than its first-best level, which in this case is equal to τ . So,

y(t) =

∣∣∣∣∣b1t+
√
5− 1

2
b2t

√
5−1
2 −

√
5 + 1

2
b3t

−
√
5+1
2

∣∣∣∣∣ (110)

We can without loss of generality take that θ(1) = 1. Indeed, if θ(t1) = 1 for some

t1 ∈ (0,∞), t1 ̸= 1, then we can replace the parameter t with the parameter s = t
t1
, and

replace the constants b1, b2, b3 with constants b′1, b
′
2, b

′
3 such that b′1 = b1t1, b

′
2 = b2t

√
5−1
2

1 and

b′3 = b3t
−

√
5+1
2

1 . Then we would have θ(s) = θ(t) and y(s) = y(t) for all t ∈ [0,∞), with

θ(s)s=1 = 1.

Using θ(1) = 1 in (103) yields b1+b2+b3 = 1. Also, θ(1) = 1 and the boundary condition

τ(1) = Q(1) imply that y(1) = 0. In turn, the latter implies that b1 +
√
5−1
2

b2 −
√
5+1
2

b3 = 0.

Now, we can solve for b2 and b3 in terms of b1 to obtain:

b2 = −b1
5 + 3

√
5

10
+

√
5 + 1

2
√
5

.
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b3 = b1
3
√
5− 5

10
+

√
5− 1

2
√
5

.

Then (103) and (110) become:

θ(t) = b1

t−
1 + 3

√
1
5

2
t
√
5−1
2 +

3
√

1
5
− 1

2
t−

√
5+1
2

+

√
5 + 1

2
√
5

t
√
5−1
2 +

√
5− 1

2
√
5

t−
√
5+1
2 (111)

y(t) =

∣∣∣∣∣∣b1
t−

1 +
√

1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−

√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−

√
5+1
2

∣∣∣∣∣∣ (112)

At first, let us suppose that the expression under the absolute value sign on the right-hand

side of (112) is positive i.e:13

y(t) = b1

t−
1 +

√
1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−

√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−

√
5+1
2 (113)

Next, we solve the differential equation (100) for z, which we will also parameterize by

t. So, we have z′(t) ≡ dz
dt

= z′(θ)θ′(t). By (111) and (113), y(t) = θ′(t)t. Then (100) can be

rewritten as:

z′(t) =

(
θ

y
− 1

)
θ′(t) =

θ

θ′(t)t
θ′(t)− θ′(t) =

θ

t
− θ′(t). (114)

Substituting (111) for θ(t) we obtain:

z′(t) = b1

(
− 1√

5
t
√
5−3
2 +

1√
5
t−

√
5+3
2

)
+

√
5− 1

2
√
5

t
√
5−3
2 +

√
5 + 1

2
√
5

t−
√
5+3
2 (115)

Integrating (115) yields:

z(t) = b1

−
1 +

√
1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−

√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−

√
5+1
2 + k (116)

where k is a constant of integration. Now, let us show that equation (99), ˙y(θ)y = θ − z,

implies that the constant of integration k is equal to zero. Note that y′(t) = ˙y(θ)θ′(t). So

we can rewrite (99) as y′(t)y = (θ − z)θ′(t). Since y = θ′(t)(t), the previous equation can

be rewritten as follows: y′(t)t = (θ − z)

13Later we will show that this is, indeed, the case since the opposite case when this expression is negative

leads to a contradiction.
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Next, from (113) we obtain:

y′(t)t = b1

(
t− 1√

5
t
√

5−1
2 +

1√
5
t−

√
5+1
2

)
+

1−
√

1
5

2
t
√
5−1
2 +

1 +
√

1
5

2
t−

√
5+1
2 (117)

Also, (111) and (116) yield:

θ(t)− z(t) = b1

(
t− 1√

5
t
√
5−1
2 +

1√
5
t−

√
5+1
2

)
+

√
5− 1

2
√
5

t
√
5−1
2 +

√
5 + 1

2
√
5

t−
√
5+1
2 − k (118)

Equating (117) and (118) yields k = 0.

Furthermore, observe that z(t)− y(t) = −b1t. Since z(t)− y(t) = 2Q(t), it follows that

Q(t) = − b1
2
t and so b1 < 0.

Now, let us confirm that, as claimed, the expression under the absolute value sign on

the right-hand side of (112) is positive. The proof is by contradiction, so suppose otherwise

i.e.,

y(t) = −b1

t−
1 +

√
1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−

√
5+1
2

− 1√
5
t
√
5−1
2 +

1√
5
t−

√
5+1
2 (119)

Then (111) and (119) yield y(t) = −θ′(t)t and so, instead of (114), we now have:

z′(t) =

(
θ

y
− 1

)
θ′(t) =

θ

−θ′(t)t
θ′(t)− θ′(t) = −θ

t
− θ′(t) =

θ

t
− θ′(t)− 2

θ

t
. (120)

Substituting (111) for θ(t) in (120) and integrating yields:

z(t) = b1

−
1 +

√
1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−

√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−

√
5+1
2

− 2b1

t−
1 + 3

√
1
5√

5− 1
t
√
5−1
2 −

3
√

1
5
− 1

√
5 + 1

t−
√
5+1
2

+

√
5 + 1√

5(
√
5− 1)

t
√
5−1
2 −

√
5− 1√

5(
√
5− 1)

t−
√
5+1
2 + k2

(121)

where k2 is a constant of integration.

Since in this case y = −θ′(t)t, the equation y′(t)y = (θ − z)θ′(t) (i.e., equation (99)

parameterized by t) can be rewritten as −y′(t)t = (θ − z). This equation can be rewritten

as follows using (111) and (121) and differentiating (119):

−2b1

t−
1 + 3

√
1
5√

5− 1
t
√

5−1
2 −

3
√

1
5
− 1

√
5 + 1

t−
√
5+1
2

+

√
5 + 1√

5(
√
5− 1)

t
√
5−1
2 −

√
5− 1√

5(
√
5− 1)

t−
√
5+1
2 + k2 = 0
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Figure 4: Structure of targeted types τ(.) and informational rents V (.) under intermediate

costs of lying

0 1
τ(1)

θ̂
τ(θ̂)

τ(θ) = ∅
V (θ) = 0

τ(θ) ̸= ∅
V (θ) > 0

which cannot hold on any neighborhood of t.

Thus, we have confirmed that y(t) is given by (113), and hence y(t) = θ′(t)t. Since

y(t) ≥ 0, it follows that θ′(t) > 0.

So, to complete the solution, it remains to characterize b1 and t̂ such that t̂ < 1 and

y(t̂) = 0 and y(t) ≥ 0 for all t ∈ [t̂, 1]. We will then have θ̂ = θ(t̂) < 1. For this, we need to

compute y′(t) and y′′(t). We have:

y′(t) = b1 +
(
√
5− 1)− 2b1

2
√
5

t̂
√
5−3
2 +

(
√
5 + 1) + 2b1

2
√
5

t̂−
√
5+3
2 (122)

y′′(t) = −3−
√
5

2

(
√
5− 1)− 2b1

2
√
5

t̂
√
5−5
2 −

√
5 + 3

2

(
√
5 + 1) + 2b1

2
√
5

t̂−
√
5+5
2 (123)

Using (113) and (117) we obtain:

y(t)− ty′(t) = b1

t−
1 +

√
1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−

√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−

√
5+1
2

− b1

(
t− 1√

5
t
√

5−1
2 +

1√
5
t−

√
5+1
2

)
−

1−
√

1
5

2
t
√
5−1
2 −

1 +
√

1
5

2
t−

√
5+1
2 =

b1

(
−
√
5− 1

2
√
5

t
√
5−1
2 −

√
5 + 1

2
√
5

t−
√
5+1
2

)
+

3−
√
5

2
√
5

t
√
5−1
2 − 3 +

√
5

2
√
5

t−
√

5+1
2 (124)

As established above, b1 < 0. In fact, let us show that b1 ∈ [−
√
5+1
2

,−1).

First, let us rule out b1 < −
√
5+1
2

. Observe that if b1 < −
√
5+1
2

, then by (122) y′(t) < 0

for all t ≥ 1. Since y(1) = 0, it follows that y(t) < 0 for all t > 1 and y(1 − ϵ) > 0 for
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sufficiently small ϵ > 0. Further, observe from (113) that y(t) > 0 when t is sufficiently

small, with limt→0+ y(t) = ∞. Finally, (124) implies that y′(t) < 0 if y(t) = 0. So, if

b1 < −
√
5+1
2

then there does not exist t̂ ̸= 1 such that y(t̂) = 0.

Consider now b1 ∈ [−
√
5+1
2

, 0]. Note that in this case: (i) by (123), y′′(t) < 0 for all t;

(ii) y(t) < 0 when t is sufficiently small, with limt→0+ y(t) = −∞, (iii) y(t) < 0 when t is

sufficiently large, with limt→∞ y(t) = −∞. (iv) By (122) y′(1) = b1 + 1.

So, if b1 ∈ (−1, 0], then y′(1) > 0. This, in combination with (i)-(iii) above, implies that

if b1 ∈ (−1, 0], then there exists a unique t̂, t̂ ̸= 1 such that y(t̂) = 0 and, moreover, t̂ > 1

and y(t) > 0 for all t ∈ (1, t̂). But we also have y(t) = θ′(t)t and θ(1) = 1. So θ(t) > 1 for

all t ∈ (1, t̂). This contradicts the fact that θ(t) ∈ [0, 1]. Hence, we can rule out b1 ∈ (−1, 0].

Similarly, we can rule out b1 = −1 because in this case y(t) = 1 only if t = 1.

Finally, if b1 ∈ [−
√
5+1
2

,−1), then (i)-(iv) above imply that there exists t̂, t̂ < 1 such

that y(t̂) = 0, and y(t) > 0 for all t ∈ (t̂, 1). Also, since y(t) = θ′(t)t and θ(1) = 1, it follows

that θ(t) ∈ [0, 1) for all t ∈ (t̂, 1). Moreover,

θ(t)− y(t) = b1

(
− 1√

5
t
√
5−1
2 +

1√
5
t−

√
5+1
2

)
+

√
5− 1

2
√
5

t
√
5−1
2 +

√
5 + 1

2
√
5

t−
√
5+1
2 =

=

√
5− 1− 2b1

2
√
5

t
√

5−1
2 +

√
5 + 1 + 2b1

2
√
5

t−
√
5+1
2 (125)

To summarize, θ(t) − y(t) > 0 and θ(t) ≤ 1 for all t ∈ [t̂, 1] when b1 ∈ [−
√
5+1
2

,−1], as

required for the solution. We conclude that b1 ∈ [−
√
5+1
2

,−1).

Thus, the two remaining parameters completing the solution are t̂ ∈ (0, 1) and b1 ∈
[−

√
5+1
2

,−1). They are jointly determined as the solutions to the two equations: y(t̂) = 0

where y(t̂) is given by (119) and the boundary condition Q(t̂)(θ(t̂)− τ(t̂)) = C.

Setting (119) to zero at t̂ yields:

b1 = −
1√
5
t̂
√
5−1
2 − 1√

5
t̂−

√
5+1
2

t̂− 1+
√

1
5

2
t̂
√
5−1
2 − 1−

√
1
5

2
t̂−

√
5+1
2

(126)
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Differentiating (126) we obtain for t̂ ∈ (0, 1):

∂b1

∂t̂
= −

√
5−1
2
√
5
t̂
√
5−3
2 +

√
5+1
2
√
5
t̂−

√
5+3
2

t̂− 1+
√

1
5

2
t̂
√
5−1
2 − 1−

√
1
5

2
t̂−

√
5+1
2

+

(
1√
5
t̂
√
5−1
2 − 1√

5
t̂−

√
5+1
2

)(
1− 1√

5
t̂
√
5−3
2 + 1√

5
t̂−

√
5+3
2

)
(
t̂− 1+

√
1
5

2
t̂
√
5−1
2 − 1−

√
1
5

2
t̂−

√
5+1
2

)2

=

3−
√
5

2
√
5
t̂
√
5−1
2 − 3+

√
5

2
√
5
t̂−

√
5+1
2 + t̂−2(

t̂− 1+
√

1
5

2
t̂
√
5−1
2 − 1−

√
1
5

2
t̂−

√
5+1
2

)2 > 0 (127)

where the last inequality follows from the fact that 3−
√
5

2
√
5
t̂
√
5−1
2 − 3+

√
5

2
√
5
t̂−

√
5+1
2 + t̂−2 = 0 for

t̂ = 1 and
∂

(
3−

√
5

2
√
5
t̂

√
5−1
2 − 3+

√
5

2
√
5
t̂−

√
5+1
2 +t̂−2

)
∂t̂

= (3−
√
5)(

√
5−1)

4
√
5

t̂
√
5−3
2 + (

√
5+1)(3+

√
5)

4
√
5

t̂−
√
5+3
2 − 2t̂−3 < 0

for t̂ ∈ (0, 1).

Recall that Q(t̂) = τ(t̂) = − b1
2
t̂. Also, since y(t̂) = 0, θ(t̂) is given by the right-hand

side of (125). Using this, we can rewrite the boundary condition Q(t̂)(θ(t̂) − τ(t̂)) = C as

follows:

F (b1, t̂, C) ≡ −b1
2

(
b1

(
t̂2

2
− 1√

5
t̂
√
5+1
2 +

1√
5
t̂−

√
5−1
2

)
+

√
5− 1

2
√
5

t̂
√
5+1
2 +

√
5 + 1

2
√
5

t̂−
√
5−1
2

)
− C = 0

(128)

Next, from (127) and (128) we get dF
dC

= −1 < 0 and

dF (b1(t̂), t̂, C)

dt̂
= −b1

2
y(t̂)− ∂b1

∂t̂

(
b1
2
t̂2 +

√
5− 1− 4b1

4
√
5

t̂
√
5+1
2 +

√
5 + 1 + 4b1

4
√
5

t̂−
√
5−1
2

)
> 0.

The last inequality holds since: (i) y(t̂) = 0; (ii) ∂b1
∂t̂

> 0 as shown in (127); (iii) the multiplier

of ∂b1
∂t̂
, b1

2
t̂2 +

√
5−1−4b1
4
√
5

t̂
√

5+1
2 +

√
5+1+4b1
4
√
5

t̂−
√
5−1
2 , is negative when t̂ = 1 and b1 < −1 and is

increasing in t̂ at any t̂ ∈ (0, 1) and b1 < −1.

Next, applying l’Hospital’s rule to (126) we obtain:

lim
t̂→1

b1(t̂) = −
limt̂→1

(√
5−1
2
√
5
t̂
√

5−3
2 +

√
5+1
2
√
5
t̂−

√
5+3
2

)
limt̂→1

(
1− 1√

5
t̂
√
5−3
2 + 1√

5
t̂−

√
5+3
2

) = −1.

So, limt̂→1 F (b1(t̂), t̂, C) = 1
4
− C.

On the other hand, limt̂→0 b1(t̂) = −
√
5+1
2

, and so limt̂→0 F (b1(t̂), t̂, C) = −C,
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From the above we conclude that for C ∈ (0, 1
4
) there exist a unique solution t̂ ∈ (0, 1)

to the equation F (b1(t̂), t̂, C) = 0 and that dt̂
dC

> 0.

Now let us establish the interval of C on which our solution applies. The upper bound

of C is equal to 1
4
, since for C > 1

4
no incentive constraints are binding. To establish the

lower bound of C, C1, note that our solution applies when θ̂ ≥ τ(1). At C1 we then have

θ̂ = τ(1) = Q(1). Let t̂m, and b1,m denote the parameter values where the latter condition

holds. Then we can rewrite the boundary condition Q(θ̂)(θ̂ − τ(θ̂)) = C as follows:

Q(t̂m)(Q(1)−Q(t̂m)) = C1

(b1,m)
2

4
t̂m(1− t̂m) = C1 (129)

So, C1, t̂m, and b1,m are determined by (126), (129) and condition θ(t̂m) = τ(1) = Q(1)

Since τ(1) = Q(1) = − b1,m
2
, we can equate the latter to θ(t̂m) as given by (125), since

y(t̂m) = 0, to obtain:

b1,m

(
−1

2
+

1√
5
t̂

√
5−1
2

m − 1√
5
t̂
−

√
5+1
2

m

)
=

√
5− 1

2
√
5

t̂

√
5−1
2

m +

√
5 + 1

2
√
5

t̂
−

√
5+1
2

m (130)

Using (126) in (130) and simplifying yields:

−
(

1√
5
t̂

√
5−1
2

m − 1√
5
t̂
−

√
5+1
2

m

)(
−1

2
+

1√
5
t̂

√
5−1
2

m − 1√
5
t̂
−

√
5+1
2

m

)
=(√

5− 1

2
√
5

t̂

√
5−1
2

m +

√
5 + 1

2
√
5

t̂
−

√
5+1
2

m

)t̂m −
1 +

√
1
5

2
t̂

√
5−1
2

m −
1−

√
1
5

2
t̂
−

√
5+1
2

m

 (131)

The last equation simplifies to:

t̂
√
5+1

m (1−
√
5) + t̂

√
5

m − t̂m(1 +
√
5) + 2

√
5t̂

√
5−1
2

m − 1 = 0 (132)

The approximate root of the last equation in (0, 1) is t̂m = 0.187169. Then from (126) we

obtain b1,m ≈ −1.554 and from (129), C1 ≈ 0.0918.

Let us now establish some useful comparative statics results. First, we have:

dθ̂

dC
=

∂θ̂

∂b1

∂b1

∂t̂

dt̂

dC
+ θ′(t̂)

dt̂

dC
=

t̂−
1 + 3

√
1
5

2
t̂
√
5−1
2 +

3
√

1
5
− 1

2
t̂−

√
5+1
2

 ∂b1

∂t̂

dt̂

dC
> 0

(133)
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The second equality follows from the fact that θ′(t̂) = y(t̂)

t̂
= 0 and (111), while the last

inequality holds because, as established above, ∂b1
∂t̂

> 0, dt̂
dC

> 0, and t̂ − 1+3
√

1
5

2
t̂
√
5−1
2 +

3
√

1
5
−1

2
t̂−

√
5+1
2 = 0 if t̂ = 1 and

∂

(
t̂−

1+3

√
1
5

2
t̂

√
5−1
2 +

3

√
1
5−1

2
t̂−

√
5+1
2

)
∂t̂

< 0 for any t̂ ∈ (0, 1).

We can now confirm that θ̂ > τ(1) for C ∈ (C1,
1
4
). We have shown above that dθ̂

dC
> 0.

Next, since τ(1) = Q(1) = − b1
2
, we have dτ(1)

dC
= −1

2
db1
dt̂

< 0 where b1 is given by (126). So,

since θ̂ = τ(1) at C = C1, it follows that θ̂ > τ(1) when C ∈ (C1,
1
4
), as required.

To obtain the comparative statics for τ(θ̂), recall that τ(θ̂) = Q(θ̂) = − b1
2
t̂. Therefore,

dτ(θ̂)
dC

= dτ(θ̂)

dt̂
dt̂
dC

=
(
− b1

2
− 1

2
t̂∂b1
∂t̂

)
dt̂
dC

. Using (126) and (127) we obtain:

− b1
2
− 1

2
t̂
∂b1

∂t̂
=

1

2

1√
5
t̂
√

5−1
2 − 1√

5
t̂−

√
5+1
2

t̂− 1+
√

1
5

2
t̂
√
5−1
2 − 1−

√
1
5

2
t̂−

√
5+1
2

− 1

2
t̂

3−
√
5

2
√
5
t̂
√
5−1
2 − 3+

√
5

2
√
5
t̂−

√
5+1
2 + t̂−2

(t̂− 1+
√

1
5

2
t̂
√
5−1
2 − 1−

√
1
5

2
t̂−

√
5+1
2 )2

=
1

2

( 1√
5
t̂
√
5−1
2 − 1√

5
t̂−

√
5+1
2 )(t̂− 1+

√
1
5

2
t̂
√
5−1
2 − 1−

√
1
5

2
t̂−

√
5+1
2 )− t̂

(
3−

√
5

2
√
5
t̂
√
5−1
2 − 3+

√
5

2
√
5
t̂−

√
5+1
2 + t̂−2

)
(
t̂− 1+

√
1
5

2
t̂
√
5−1
2 − 1−

√
1
5

2
t̂−

√
5+1
2

)2

=

√
5−1
2
√
5
t̂
√
5+1
2 +

√
5+1
2
√
5
t̂−

√
5−1
2 −

√
5+1
10

t̂
√
5−1 +

√
5−1
10

t̂−(
√
5+1)− 4

5
t̂−1

(t̂− 1+
√

1
5

2
t̂
√
5−1
2 − 1−

√
1
5

2
t̂−

√
5+1
2 )2

(134)

Let G(t̂) be the numerator of the last equation in (134). Note that G(1) = 0, and
∂G
∂t̂

= 1√
5
t̂
√

5−1
2 − 1√

5
t̂−

√
5+1
2 − 4

10
t̂
√
5−2 − 4

10
t̂−(

√
5+2) + 4

5
t̂−2 = 1√

5
t̂
√
5−1
2 − 1√

5
t̂−

√
5+1
2

− 4
10
t̂−2(t̂−

√
5 − 1)(1− t̂

√
5). So, ∂G

∂t̂
< 0 for all t̂ ∈ (0, 1). Hence, G(t̂) > 0 for all t̂ ∈ (0, 1),

which by (134) means that − b1
2
− 1

2
t̂∂b1
∂t̂

> 0 for t̂ ∈ (0, 1). Since dt̂
dC

> 0, we conclude that
dτ(θ̂)
dC

> 0.

Finally, let us show that Q is convex in τ . Note that τ(t) = y(t) + Q(t) = y(t) − b1
2
t.

Therefore, dy
dτ

= y′(t)
τ ′(t)

= y′(t)

y′(t)− b1
2

and d2y
dτ2

=
d
dy
dτ
dt

τ ′(t)
=

− b1
2
y′′(t)

(y′(t)− b1
2
)3
. From (122), τ ′(t) = y′(t)− b1

2
=

1
2
b1 +

(
√
5−1)−2b1
2
√
5

t̂
√
5−3
2 + (

√
5+1)+2b1
2
√
5

t̂−
√
5+3
2 which is equal to b1

2
+ 1 > 0 when t = 1. Since

y′′(t) < 0 by (123), it follows that y′(t)− b1
2
> 0 for t ∈ (0, 1). So, d2y

dτ2
< 0. Since Q = τ − y,

we have dQ
dτ

= 1− dy
dτ

=
− b1

2

y′(t)− b1
2

> 0 and d2Q
dτ2

= −d2y
dτ2

> 0.

Also, since Q(t) = q(τ(t)), we have Q′(t) = q′(τ(t))τ ′(t). So, since Q′(t) > 0 and

τ ′(t) > 0, it follows that q′(θ) ≡ q′(τ(t)) > 0 for θ = τ(t). Finally, differentiating Q′(t) =

q′(τ(t))τ ′(t) we get: 0 = Q′′(t) = q′′(τ(t))(τ ′(t))2 + q′(τ(t))τ ′′(t). Since τ ′′(t) = y′′(t) < 0,
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Figure 5: Optimal mechanism in quadratic-uniform case

(a) Optimal quantities

(b) Optimal targeted types
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Figure 6: Quantity q(τ(θ)) of the targeted type τ(θ)

we conclude that q′′(θ) ≡ q′′(τ(t)) > 0 for θ ∈ (τ(θ̂), τ(1)). So q(θ) is strictly increasing and

convex for θ ∈ (τ(θ̂), τ(1)). This completes the analysis of the quadratic-uniform case.
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