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Abstract

We study mechanism design in environments where misrepresenting private information
is costly. Specifically, a privately informed agent has to take several signalling actions, send
several messages or undergo a number of tests in which it is costly for her to misrepresent
her type. We derive the optimal mechanism for this environment. A surprising property of
the optimal mechanism is the absence of exclusion. Particularly, in the monopoly screening
setting every consumer type whose valuation for the good exceeds the marginal cost of
production is allocated a positive quantity. We also establish conditions under which
the set of implementable allocation profiles increases in the number of messages/signals
while the overall cost of signalling diminishes. In the limit, as the number of messages
becomes very large, the principal can elicit the agent’s private information at a very small
cost. Our results explain why employers often prefer to screen applicants via multiple
rounds of interviews rather than via menus of contracts, and why the welfare losses due
to unproductive signalling (“rat race”) may not be too large.
JEL Nos: C72, D82, D86
Keywords: mechanism design, costly misrepresentation, screening, multiple signals.

1 Introduction.

In this paper we study mechanism design and screening in settings where agents incur some
cost of misrepresenting their private information. These costs may exist for several reasons.
First, an individual may find it costly to misrepresent the truth for psychological or ethical
reasons. Such individual may experience stress or discomfort from lying.1. Second, misrep-
resenting the truth may require costly actions, such as acquiring skills and/or technology for
manufacturing evidence, and taking effort to conceal one’s information or hide evidence that
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applies.

1Behavioral psychologists have extensively studied the physical symptoms associated with the emotional
discomfort, such as “ blushing,” “feeling wrong,” that people experience when lying. See, for example Ekman
(1973)
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reveals the true state of the world. For example, in order to obtain a supplier contract, or
to qualify for a loan, win a grant or a promotion, a firm or an individual may need to be
perceived as highly productive, successful and/or creditworthy. This goal may be attained
by exhibiting “evidence” exaggerating prior performance and concealing the risk of default
or non-performance. Yet, the production of such favorable but inaccurate evidence would
normally require expending cost and effort.

Our model is similar to the one studied in the screening literature, but differs in one very
important aspect. We consider a principal-agent model in which the agent has private type
information that affects both her own and the principal’s utility from a social decision (which
may involve consumption allocation, or an activity such as production, etc.). In addition, the
agent can send a number of signals, or messages (the terms ‘signal’ and ‘message’ are used
interchangeably in the sequel) about her type. In contrast to much of the screening literature,
we assume that the agent’s cost of sending a particular message increases in the magnitude of
type misrepresentation, and that the agent can send multiple costly messages or signals.

The motivation behind this key aspect of our approach is fairly natural and intuitive. As
one interpretation, an agent may have to undergo a number of tests assessing her ability from
different angles. In this case, message i would correspond to the agent’s performance on test
i. On every test, an agent can attain her “natural” level of performance corresponding to
her type without incurring additional effort or disutility, while attaining a different level of
performance requires costly effort or disutility.

Similarly, a message may correspond to an outcome of an inspection or an audit undertaken
by the principal. For example, shareholders or the parent corporation may carry out several
accounting and other audits of their subsidiary. The subsidiary’s managers would then have
to incur the cost of hiding or embellishing the true state of the world and fudging the numbers
during each audit. In the job-market context the principal (employer) may ask the candidate
to undergo several interviews conducted by different interviewers. Each interviewer may use a
different method to evaluate the candidate’s ability. Then the candidate would have to incur
an extra cost of time and effort to prepare for each test or interview so that she can perform
at the level above her true ability.

Further, each message could represent a different piece of evidence presented by the agent to
her examiner, or to a judge in a court of law. Producing evidence, such as records, documents,
etc., is typically costly, and such cost is normally higher when the agent procures untruthful
evidence. In line with this motivation, we assume that an agent’s cost of producing a certain
message, signal, or a piece of evidence is increasing in the degree to which this message deviates
from depicting the true state of the world.

Our analysis focuses on three issues. First, we explore the effect of increasing the size of the
signal space, or the number of messages, on the set of implementable allocations. Second, we
derive the optimal mechanism with multiple messages and characterize its properties. Third,
we present a method for choosing the optimal number of messages when the principal also
incurs a fixed cost of eliciting each message. Most of our results, with the exception of the
characterization of the optimal mechanism, hold for a multidimensional type space.

We show that the availability of multiple costly messages, or tests, can significantly expand
the set of implementable allocations. Specifically, under fairly standard conditions, the set of
implementable allocation profiles increases monotonically in the number of messages. In the
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limit when the number of messages becomes very large, any allocation profile becomes imple-
mentable at zero communication cost provided the agent’s marginal cost of misrepresenting
herself does not go to zero too fast in the number of messages. When the agent’s marginal cost
of misrepresenting her type is zero, it becomes necessary to induce her incur some cost and
send messages misrepresenting her type to some degree. Still, under analogous conditions, we
establish an approximate implementation result. It says that, with sufficiently many messages,
the principal can come arbitrarily close to any decision rule and any surplus allocation, and
at the same time keep misrepresentation costs arbitrarily small.

Further, we characterize the optimal screening mechanism maximizing the principal’s ex-
pected profits for an arbitrary number of messages. That part of our analysis in related to
the contributions by Maggi and Rodriguez-Clare (1995) and Crocker and Morgan (1998), and
we comment more on this in Section 4. We establish an important qualitative property of the
optimal mechanism - absence of exclusion. Specifically, when costly messages are available,
then each agent-type who can generate a positive surplus is assigned a non-zero allocation in
the optimal mechanism. Thus, the standard result on the optimality of exclusion in optimal
screening is non-robust to the availability of costly signals.2

Finally, we use our characterization of the optimal mechanism to determine the optimal
number of signals or messages which the principal should request when there is a fixed cost
for eliciting and processing each message.

Our findings have practical relevance. In particular, they can explain why the employ-
ers in a number of industries prefer to screen and interview job-applicants very thoroughly,
rather than to offer self-selecting menus of contracts or strong performance incentives to them.
Indeed, the interviewing process in many professional job-markets appears to be consistent
with the idea of requesting multiple messages or signals from the candidate, with each signal
being somewhat different from the others. For example, in the context of a departmental visit
on the academic job-market a prospective candidate meets with faculty members working in
different fields. It is conceivable that each conversation provides an independent signal of
the candidate’s ability, because different faculty members, especially if they work in different
fields, assess the candidate from different perspectives and inquire about different aspects of
the candidate’s knowledge and skills. Similarly, consulting firms have developed rigorous se-
lection procedures with multiple rounds of interviews that involve solving cases, conversations
with consultants, managers and partners.

Our results imply that if a job candidate has to go through sufficiently many such inter-
views, or other tests, then substantially misrepresenting his ability will be too costly. So, the
employer will have a quite accurate estimate of the candidate’s ability, and would not have to
offer a powerful incentive scheme to her on the job. This is notable since in reality the incen-
tive schemes offered to the employees are often not as strong as predicted by the contracting

2It is worth noting that when costly signals are absent exclusion is a robust property of optimal screening
mechanisms. In particular, a profit-maximizing monopolist will choose not to sell to consumers whose will-
ingness to pay for the good is not sufficiently higher than marginal cost, under both uniform and non-linear
pricing, except for the non-generic case of perfectly inelastic consumer demand at price equal to marginal cost
(which requires either that there are no consumers with valuations near marginal cost, or that the density of
valuations is infinite at this level) (see Maskin and Riley (1984)). Exclusion must also occur in settings with
multidimensional private information (see Armstrong (1996) and Rochet and Choné (1998)).
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literature.
Further, ever since Spence’s (1973) seminal contribution, economists have been concerned

with potential loss of welfare due to signalling. Specifically, individuals engaged in a compet-
itive ‘rat race’ may spend too much time and effort in activities which provide an informative
signal about their ability. Yet, those activities may be non-productive and hence constitute
a loss for the society. Our results indicate that this problem could be overcome by a careful
choice of the signalling procedure by the mechanism designer. When this is done properly
using multiple signals, individuals will have no incentives to engage in unproductive signalling
to win the ‘rat race,’ as it will be too costly.

Our paper is related to two strands of literature. The first of these is the literature on
costly state falsification. Lacker and Weinberg (1989), Maggi and Rodriguez-Clare (1995) and
Crocker and Morgan (1998) study principal-agent models in which cost of misrepresentation
is smooth and increasing in the magnitude of misrepresentation.3 These authors point out
that in such environments it is easier for the principal to elicit agents’ private information, and
that it is optimal for the principal to induce the agent to engage in some misrepresentation.
Kartik and Tercieux (2012) study Nash implementation in a game of complete information
where players may manufacture “evidence” at cost. The principal feature distinguishing our
paper from this literature is that we allow the agent to send multiple costly signals or messages,
and study how implementability is affected when we increase the size of the message space.

Our paper is also related to the extensive literature on signalling, since we emphasize
the role of communication in determining the principal’s allocation decision, although ours
is a screening model and we use the analytical tools of mechanism design, rather than a sig-
nalling approach. Our modelling assumption requiring the least costly message/signal to be
type dependent connects our paper to several contributions on costly signalling, in particular,
Bernheim and Severinov (2003), Kartik, Ottaviani and Squintani (2007), Kartik (2009) and
Seidmann and Winter (1997). In Bernheim and Severinov (2003), the type-dependence of
the least costly signal is derived endogenously since the signalling action has intrinsic utility.
Kartik (2009) studies a signalling model with costly misrepresentation. The equilibrium in his
model converges to the most informative cheap talk equilibrium as the cost of misrepresen-
tation becomes very small, while it converges to truthtelling when the cost of lying becomes
very large. One of key differences between these signalling papers and ours is that in our
paper the mechanism designer plays an active role in constructing the optimal communication
scheme consisting of multiple messages. The mechanism designer does so in such a way that,
although each type incurs some misrepresentation cost, in equilibrium those costs are small
for each type, yet imitating another type becomes very costly for everyone.

Seidmann and Winter (1997) study signalling when the set of feasible signals depends on
the sender’s type. They derive conditions that ensure that full revelation occurs in equilibrium.
Our paper shows that type-dependency of the least cost signal has a very strong effect when
the number of signals is allowed to grow. In fact, while the signalling literature has considered

3Green and Laffont (1986) and Alger and Ma (2003) consider environments in which the falsification cost
is binary, taking on the value zero or infinity, and show that mechanisms in which the agent does not always
send truthful signals can attain outcomes that are not implementable via mechanisms with truthful signals.
Deneckere and Severinov (2001) study implementability when the set of messages that an agent can send in a
mechanism is type-dependent private information.
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models with multiple signals (Rochet and Quinzii (1985), Engers (1987)), it has not posed the
question of how the equilibrium is affected by increasing the dimensionality of the signal space.
Our paper is also related to Sher and Vohra (2014) who consider a seller-buyer bargaining
model in which the seller may request multiple pieces of type-dependent evidence from the
buyer. In contrast to our paper, the “cost” of a piece of evidence to a particular buyer is either
zero or infinity. A general model of mechanism design with evidence is studied by Deneckere
and Severinov (2008)

The rest of the paper is organized as follows. In section 2 we describe the model, Section
3 presents the monotonicity and asymptotics results. Section 4 studies optimal mechanisms
when the type space is one-dimensional. Section 5 endogenizes the dimension of the signal
space by assuming that eliciting messages is costly to the principal. All proofs are relegated
to an Appendix.

2 Model.

We consider a principal-agent model with asymmetric information. To this standard environ-
ment we add a costly communication process in which the principal sends several messages or
signals to the principal.4

Specifically, in our model the principal controls the allocation space X. We assume that
X is a compact subset of a k-dimensional Euclidean space . Thus, the principal’s action is the
choice of an allocation x ∈ X. Allocation x can denote a vector of production and/or con-
sumption decisions, as well as monetary transfers. The agent privately observes the outcome
of a random variable θ (which we will refer to as the agent’s type in the sequel) that affects
the utilities of the principal and the agent. We assume that θ ∈ Θ, where Θ is a compact
subset of Rl. Thus, we explicitly allow for multidimensional private information.

When the principal selects an allocation x ∈ X and the agent’s type is given by θ, the
agent obtains utility u(x, θ) and the principal receives utility w(x, θ). We assume that both
u(x, θ) and w(x, θ) are continuous in x over the space X, and that there exists an outcome x
which gives each type of the agent a utility that does not exceed her utility from the outside
option.

Further, the principal may request the agent to send up to nmessages or signals (m1, ...,mn).
For example, the principal may query the agent’s ability by asking her to undergo a number of
tests, interviews, or inspections. This assumption reflects that each message is characterized
by some specific content, or is sent along a different dimension. We assume that the i-th
message mi belongs to a compact subset Mi of Rl. Note that we require M i and Θ to be
of the same dimension, so that each message can contain information about all of the aspects
or dimensions of the agent’s type.5Let mn = (m1, ...,mn) denote the vector of messages or

4Although we often use the term ‘signal’ below, we use a mechanism design or screening approach, rather
than signalling, as understood by the economics literature. The term ‘signal’ is appropriate because it is used
to refer to certain agent actions or messages which possess only informational value that has to be inferred by
the principal.

5This involves little loss of generality, as we allow the agent to send multiple messages. For example, if
each message could only reflect one dimension of the agent’s type, we could always bundle them in groups of l
messages.
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signals sent by the agent, and let Mn =
∏n

i=1Mi. Apart the from costly messages mn, we also
allow the agent to send a cheap talk message τ . By the Revelation Principle, we can without
loss of generality take the latter to be a type announcement, so that τ ∈ Θ and the agent’s
message space is equal to Θ×

∏n
i=1Mi ≡ Θ×Mn. In the sequel, we rely on mechanisms that

do not use cheap talk messages. However, it is important to show that our results are robust
to the addition of such messages and that the latter do not affect the scope of implementation.

An agent of type θ incurs the cost Cn(mn, θ) when she sends the vector of messages mn.
The cost function Cn(.) : Mn × Θ 7→ R+ has the following properties. First, there exists
a mapping γi(.) : Θ 7→ Mi s.t. message mi is costless for type θ if and only if mi = γi(θ).
Thus we have γi(θ) = argminmi C

n(m1, ...,mi, ...,mn, θ) for all (m1, ..,mi−1,mi+1, ...,mn),
and Cn(m1, ...,mn, θ) = 0 if and only if mi = γi(θ) for all i = 1, ..., n. This implies that
Cn(m1, ...,mn, θ) > 0 whenever there exists i ∈ {1, ..., n} s.t. mi ̸= γi(θ).

The function Cn(.) embodies the connection between the agent’s payoff-relevant type θ
and her abilities to manipulate information. Note that the message γi(θ) can be regarded as
“truthful” for the agent of type θ, because this is the message that agent-type would prefer
to send if she did not care about affecting the principal’s action. In contrast, sending any
message mi ̸= γi(θ) involves costly type misrepresentation, or costly distortion.

Each message space Mi is assumed to be sufficiently large in the following sense: there
exists an open set of messages Bi and ν > 0 s.t. γi(θ) ̸∈ Bi for all θ ∈ Θ, and for all θ ∈ Θ
there exists m′

i(θ) ∈ Bi s.t. Cn(m1, ..,m
′
i(θ), ...,mn, θ) − Cn(m1, .., γi(θ), ...,mn, θ) ≥ ν. The

only additional requirement that we will introduce below and which will be needed for our
asymptotic results to hold is that the cost of sending a message mi ̸= γi(θ) does not go to
zero too quickly as the number of messages increases.

The agent’s cost of misrepresenting her type, i.e. sending message mi ̸= γi(θ), generally
depends on the other communicated messages.6 Such dependencies arise naturally. For ex-
ample, as the agent proceeds with sending more messages to the principal, she may learn
how to misrepresent her information more effectively and at a lower cost. Alternatively, addi-
tional effort spent on one test could be fatiguing for the agent, and therefore raise the cost of
undergoing a subsequent test.

To summarize, when the agent with preference parameter θ sends an array of messages
(m1, ...,mn) and the principal selects an allocation x, the agent’s overall payoff is given by:

u(x, θ)− Cn(m1, ...,mn, θ) (1)

A mechanism that the principal offers to the agent can be represented by a mapping g(.)
from the agent’s message space Θ×Mn into the space of allocations X. We will say that an
allocation profile x(·) is implementable if there is a mechanism g(·) : Θ ×Mn 7→ X, and an
agent’s message/signal rule (strategy) µn : Θ → Θ×Mn and agent’s cheap-talk rule (strategy)
τ : Θ 7→ Θ s.t. for all θ ∈ Θ we have x(θ) = g(τ(θ), µn(θ)) and such that:

u(x(θ), θ)− Cn(µn(θ), θ) ≥ max
θ′∈Θ,mn∈Mn

u(g(θ′,mn), θ)− Cn(mn, θ) (2)

6In a more general model, the communication cost function Cn(.) may also depend on a separate parameter
t, so that agents with the same preference parameter θ but different t may have different communication costs.
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When condition (2) holds, it is optimal for the agent of any type θ ∈ Θ to accept the contract
g(.) and send an array of messages (τ(θ), σn(θ)), resulting in the allocation x(θ). In the next
section we study how the set of implementable allocations varies with the dimension of the
signal space n.

3 The Dimension of the Signal Space

3.1 Monotonicity

We start by presenting two results which illustrate the central message of this paper that the
availability of multiple costly messages, or signals, has powerful implications for implementa-
tion. Thus, our focus throughout this section is on the set of implementable allocation rules,
x(.), and on the expected message cost κn(x) =

∫
ΘCn(µn( θ), θ)f(θ)dθ where µn(.) is the

message strategy used to implement x(.). Cheap talk messages, although allowed, do not play
a role in our mechanisms as every type will be identified by the array of costly messages mn

which it sends.
We make the following additional assumptions linking the cost functions Cn(.) and Cn+1(.)

for environments with n and n+ 1 messages, respectively:

Cn+1(m1, ...,mn,mn+1, θ) ≥ Cn(m1, ...,mn, θ), for all mn+1 ∈ Mn+1 (3)

Cn+1(m1, ...,mn, γn+1(θ), θ) = Cn(m1, ...,mn, θ)

Thus sending the extra message γn+1(θ) is costless for type θ, but sending any other extra
message is costly.

With these assumptions, enlarging the dimension of the signal space increases the set of
implementable allocation profiles, without increasing communication costs:

Lemma 1 (Monotonicity) Suppose that under signal space Mn the decision rule x : Θ → X is
implementable via message rule µn(θ), at an expected signal cost κn(x) =

∫
ΘCn(µn( θ), θ)f(θ)dθ.

Then, under signal space Mn+1, x is implementable at an expected signal cost κn+1(x) ≤ κn(x).

The proof of Lemma 1 is straightforward and is therefore omitted. Importantly, Lemma 1
leaves open the possibility that the set of implementable allocations is invariant to n, and the
following example shows this can indeed happen.

Example 1 Suppose that θ is a scalar, and that Cn(m1, ...,mn, θ) =
∑n

i=1 c(mi, θ), where
c(mi, θ) = mi/θ. Then since

∑n
i=1 c(mi, θ) = c(

∑n
i=1mi, θ), any allocation that can be imple-

mented with n > 1 can also be implemented with n = 1, by selecting m1(θ) =
∑n

i=1m
n
i (θ).

What goes wrong in the above example is not so much the linearity of the cost function Cn,
but rather that the costless message is the same across agent types, i.e. γi(θ) ≡ 0.7 Additional
messages would have an effect in this example if the agents also derived some type-dependent

7Note that the same conclusion would obtain if c(m, θ) were concave in m. If c(m, θ) were convex, then
signalling costs can be reduced by having multiple tests.
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utility from a message mi, with higher types deriving more utility from higher messages,
so that γi(θ) would be strictly increasing in θ. For example, in the context of educational
signalling, higher ability types presumably enjoy studying more than low ability types. In line
with this motivation, our next assumption requires costless messages to vary with agent-type:

Assumption 1 For each n there exists δn > 0 s.t. Cn(mn−1,mn, θ) − Cn(mn−1, γn(θ),θ)
≥ δn ||mn − γn(θ)||.

Assumption 2 There exists r < ∞ s.t. ||γi(θ′)− γi(θ)|| ≥ r∥θ′−θ∥, for all θ′,θ ∈ Θ, all i.

Assumption 1 ensures that the signal cost of agent-type θ gets larger as mn moves further
away from her costless message collection (γ1(θ), ...γn(θ)). Assumption 2 says that costless
messages are sufficiently sensitive to the type.

Let Ω be the set of all decision rules x : Θ → X, and let En = {x(·) ∈ Ω : x(·) is
implementable with signal space Mn}. We can now state our result asserting that, under
these mild assumptions, increasing the dimension of the signal space strictly increases the set
of implementable allocations:

Theorem 1 Suppose that Assumptions 1 and 2 hold. If En ̸= Ω then En  En+1.

3.2 Asymptotics

Theorem 1 raises the interesting question of how the set of implementable allocations and
the associated message costs change as the dimension of the signal space grows arbitrarily
large. We establish two kinds of results in this case. First, when the marginal cost of small
misrepresentation is non-zero and does not vanish too quickly, we show that the principal can
still elicit the agent’s information at zero cost. On the other hand, when the marginal cost
of small type misrepresentations is zero, implementation becomes harder. Nevertheless, when
the marginal cost of misrepresentation increases in the magnitude of misrepresentation at a
rate that does not go to zero too fast as the number of messages becomes large, the principal
can still implement almost all allocation profiles, although the agent has to incur a very small
communication cost.

Assumption 3 There exists L < ∞ s.t. ∥x(θ′)− x(θ)∥ ≤ L∥θ′ − θ∥, for all θ′, θ ∈ Θ.

Assumption 4 There exists K < ∞ s.t. |u(x′, θ)− u(x, θ)| ≤ K∥x′ − x∥, for all θ ∈ Θ.

Assumption 3 requires the allocation to be Lipschitz continuous with Lipschitz constant
L. Assumption 4 strengthens the continuity requirement on the agent’s utility function to
uniform continuity in x. Since X ×Θ is compact, Assumption 4 holds if u(·, ·) is C1.

Let ΩL = {x(.) : Θ 7→ X : x(.) satisfies Assumption 3 with constant L}. Our next theorem
shows that all allocation profiles in ΩL are implementable at zero cost when the marginal
cost of misrepresenting the type is positive and does not go to zero too fast in the number of
messages.
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Theorem 2 Suppose Assumption 4 holds, and that there exists α ∈ [0, 1) and c > 0 s.t.
Cn(m1, ...,mi, ...,mn,θ)− Cn(m1, ..., γi(θ), ...,mn, θ) ≥ c

nα ||mi − γi(θ)||, for all θ, θ′ ∈ Θ.
Then there exists N < ∞ such that ΩL ⊂ En for all n ≥ N , and such that any x ∈ ΩL is

implementable with zero communication costs.

Intuitively, local incentive constraints hold because the marginal benefit of sending a non-
truthful message mi ̸= γi(θ) is finite for type θ, while the marginal cost of doing so is bounded
from below by c

nα whenmi is near γi(θ). Therefore, when the number of messages is sufficiently
large, the cost of a misrepresentation exceeds the benefit of a better allocation. This ensures
that no type is willing to send non-truthful messages, and so no communication costs are
incurred.

It should be noted because Cn is minimized w.r.t. mi at mi = γi(θ) and because M (n) and
Θ are compact, the condition on Cn(.) imposed in Theorem 2 need only hold locally around
γi(θ). In other words, there only need to exist some ‘start-up’ costs of misrepresentation.

The reasoning in the previous two paragraphs suggests that the set of implementable
allocation profiles may be more restricted when the marginal cost of type misrepresentation is
zero at the ‘truthful’ message γi(θ). Indeed, in this case implementation will generally require
that the agent send some “non-truthful” messages and incur some misrepresentation costs.
Nevertheless, we will demonstrate that by carefully constructing the communication stage of
the mechanism, the principal can elicit the agent’s private information at negligible cost.

For this result, we specialize our model to one with transferable utility. Thus, we partition
the outcome x = (q, t) into a production assignment q ∈ Q, where Q is a compact subset of
Rk−1, and a transfer t ∈ R from the agent to the principal. The agent’s utility function is
quasilinear

u(x, θ) = v(q, θ)− t.

We assume that v(q, θ), Cn(mn, θ) and γn(θ) are twice continuously differentiable functions.
For any function f(v,w) : Rj × Rk → R, where j, k > 1, we denote the derivative of

f w.r.t. the vector v by Dvf(v,w). Thus, Dvf(v,w) is a vector containing the j partial
derivatives ∂f

∂vi
. We also denote the derivative of the function Dvf(v,w) w.r.t. the vector v

by D2
vvf(v, w), and similarly for D2

vwf(v,w). Thus D2
vwf(v,w) is a j× k matrix containing

the cross partials ∂2f
∂vi∂wl

. We may now state:

Assumption 5 There exist α ∈ [0, 1) and ω, ω̄ > 0 such that for all (mn, θ, θ′) and all
i = 1, ..., n:
(i) ||DθC

n(mn, θ)−DθC
n(γn(θ), θ)|| ≥ ω

nα ||mn − γn(θ)||;
(ii) ||DmiC

n(mn, θ)−DmiC
n(γn(θ), θ)|| ≤ ω̄

nα ||mi − γi(θ)||;
(iii) D2

mθi
Cn(mn, θ)Dθγi(θ

′) ≡ An
i is negative definite, and zτAn

i z ≤ − ω
nα ||z||2 for all n.

To interpret Assumption 5, consider the case l = 1. Parts (i) and (ii) then says that the

cross-partial ∂2Cn

∂θ∂mi
is bounded above and below, and does not converge to zero too quickly

as n grows large. Part (ii) adds the single crossing requirement that ∂2Cn

∂θ∂mi
and γ′i(θ) have

opposite signs.
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Theorem 3 Suppose Assumptions 2 and 5 hold. Then for every pair of continuously differ-
entiable functions (q, t), and every ε > 0, there exist N < ∞, and for each n ≥ N a transfer
function tn with |tn(θ)− t(θ)| < ε, such that (q, tn) is implementable whenever the dimension
of the signal space n exceeds N . Furthermore, the associated communication cost is less than
ε for every type of agent.

In the mechanism implementing the allocation profile {q(θ), tn(θ)}, agent-type θ sends
the costly messages mn(θ) ̸= γn(θ), and hence incurs communication cost Cn(mn(θ), θ).
To understand the significance of this, note that the first-order condition necessary for local
incentive compatibility -derived by maximizing the payoff of agent-type θ in (1)- is given by:

Dθt
n(θ) = −Dqv(q(θ), θ)Dθq(θ) +DmnCn(mn(θ), θ)Dθm

n(θ) (4)

If the agent were to send only costless messages, then the second term in (4) would be
zero, as DmiC

n(γn(θ), θ) = 0. Thus in the absence of costly messages the first-order condition
imposes a restriction on the set of implementable allocations in the form of a link between
q(θ) and tn(θ). Costly signals weaken and eventually eliminate the need for such link, and
this allows to implement a larger set of allocation profiles.

In particular, when the number of messages n is small, the degree to which the link between
q(θ) and tn(θ) is weakened is limited by the magnitude of the required misrepresentationmn(θ)
and by the associated communication costs, which may have to be fairly large. In contrast,
with sufficiently large n, the codependency between q(θ) and t(θ) is eliminated at a very small
cost. In fact, by choosing n andmn(θ) appropriately, we can ensure that (4) holds for arbitrary
(q(θ), t(θ)), and the agent’s communication cost Cn(mn(θ), θ) is less than an arbitrary fixed
ε.

Finally, consider the second-order conditions for implementation. Maggi and Rodriguez-
Clare (1995), who characterize the optimal mechanism for n = 1, imposed the following
restrictions: q′(θ) ≥ 0 and m′(θ) ≥ 0 to guarantee that their second-order conditions hold.
In contrast, a careful inspection of our proof reveals that, with many n, the second-order
conditions hold because the agent sends a large number of messages which are close to her
costless message γ(θ). Consequently, we are able to implement nearly all allocation profiles
at a small communication cost.

4 Optimal Mechanisms

The previous two theorems provide conditions under which almost all decision rules become
implementable as the number of signals becomes very large, while the necessary communication
cost converges to zero. However, this does not mean that asymmetric information becomes
irrelevant, or that the principal can always achieve his most preferred allocation profile. There
are at least two reasons for this. First, the bounds on the message cost function described in
the previous section may fail to hold. More importantly, the number of available messages
could be limited either exogenously or endogenously. In particular, endogenous limits on the
number of signals arise most naturally if the principal incurs a fixed cost to elicit and process
each signal.

10



In this section, we explore exogenous limits on the number of messages. Specifically, we
characterize the optimal mechanism when the type space is one-dimensional, i.e. l = 1. We
continue to assume that an allocation x consists of a monetary part t and non-monetary part
q. For simplicity, we assume that Q = R+.

8 The agent’s payoff is given by v(q, θ)− t and the
principal’s payoff is given by t− h(q, θ). We impose individual rationality, and normalize the
agent’s reservation utility to equal 0.

We make the standard assumptions that vq > 0, hq > 0, vθ > 0, hθ ≤ 0, vqθ > 0, vqθ ≤ 0,
vθθ ≤ 0, and vqq − hqq < 0, for all q ∈ Q and θ ∈ Θ. In addition, we assume that vq(0, θ)−
hq(0, θ) > 0 for all θ > θ and there exists q̄ < ∞ s.t. vq(q, θ)− hq(q, θ) < 0 for all q > q̄ and
θ > θ. These two assumptions guarantee that the solution q = qFB(θ) to

max
q≥0

{v(q, θ)− h(q, θ)}

exists and satisfies qFB(θ) > 0 for all θ > θ. We also require that v(q, θ) = 0 for all q and
v(0, θ) = 0 for all θ, as well as vq(q, θ)−hq(q, θ) > 0, so that qFB(θ) is increasing in θ. Finally,
we make the following technical assumptions in deriving the optimal mechanism:

Assumption 6 (i) vq(q, θ)− hq(q, θ)− 1−F (θ)
f(θ) vqθ(q, θ) is increasing in θ;

(ii) ∂Cn

∂mi
(mn, θ)− 1−F (θ)

f(θ)
∂2Cn

∂mi∂θ
(mn, θ) is decreasing in θ;

(iii) Cn(mn, θ) is convex in mn and in θ, and ∂2Cn

∂mi∂θ
(mn, θ) < 0.

Parts (i) and (ii) of Assumption 6 require the cross-partial derivatives of the agent’s virtual
utility and virtual communication cost to be, respectively, positive and negative. Part (iii)
requires the cost function to be convex in mn and in θ, and imposes a single crossing condition.

We now proceed to derive the optimal mechanism. Specifically, the principal selects a
“quantity” q(·), a transfer t(.) and a vector of messages mn(·) to solve:

max
q(θ),t(θ),mn(θ)

∫
(t(θ)− h(q, θ))f(θ)dθ

subject to incentive constraints:

v(q(θ), θ)− Cn(mn(θ), θ)− t(θ) ≥ v(q(θ′), θ)− Cn(mn(θ′), θ)− t(θ′), for all θ and θ′ (5)

and the individual rationality constraint:

U(θ) ≡ v(q(θ), θ)− Cn(mn(θ), θ)− t(θ) ≥ 0. (6)

Let us first consider the benchmark case with no costly messages, i.e. n = 0. It is well-
known that the solution to the principal’s problem involves selecting an allocation qSB(θ) that
maximizes ‘virtual’ welfare

Γ(q, θ) ≡ v(q, θ)− h(q, θ)− 1− F (θ)

f(θ)
vθ(q, θ).

8Our qualitative results extend straightforwardly to the case where Q is multidimensional.
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Invoking Assumption 6 (i) and letting θ∗ ∈ (θ, θ̄) be the unique solution to Γq(0, θ) = 0, we
obtain that the optimal quantity when n = 0 is given by qSB(θ) = 0 for all θ ∈ [0, θ∗], and by
the unique solution to Γq(q, θ) = 0 for all θ ∈ [θ∗, 1]. Thus there is exclusion in the second-best
solution: all types in the interval [0, θ∗] receive zero quantity.

Next, let us consider the problem for n > 0. Solving for t(θ) from (6) and substituting into
the objective, and replacing the incentive constraints (5) by the envelope condition associated
with the agent’s utility maximization, yields the following “relaxed” problem:

max
q(θ),mn(θ),U(θ)

∫
{v(q(θ), θ)− h(q(θ), θ)− Cn(mn(θ), θ)− U(θ)} f(θ)dθ (7)

subject to individual rationality constraint (6) and

U ′(θ) = vθ(q(θ), θ)− Cn
θ (m

n(θ), θ) (8)

We will verify that the solution to the relaxed problem (7) subject to (6) and (8) satisfies
(5) and hence also solves the unrelaxed problem. To solve the relaxed problem, define the
Hamiltonian

H = {v(q, θ)− h(q, θ)− Cn(mn, θ)− U}f(θ) + σ{vθ(q, θ)− Cn
θ (m

n, θ)}+ ρU (9)

Maximizing H w.r.t. q ≥ 0 and mn yields the first order conditions:

{vq(q, θ)− hq(q, θ)}f(θ) + σvqθ(q, θ) ≤ 0 (= 0, if q > 0) (10)

∂Cn

∂mi
(mn, θ)f(θ) + σ

∂2Cn

∂mi∂θ
(mn, θ) = 0 (11)

The costate equation is
σ′(θ) = f(θ)− ρ(θ), (12)

Furthermore, the solution has to satisfy complementary slackness conditions

ρ(θ)U(θ) = 0, ρ(θ) ≥ 0, and U(θ) ≥ 0, (13)

Also, the following transversality conditions have to hold: σ(θ)U(θ) = 0, σ(θ̄)U(θ̄) = 0,
σ(θ) ≤ 0 and σ(θ̄) ≥ 0

To describe the solution to the relaxed problem, lets us denote the global maximizers
of the Hamiltonian (9) by q∗(σ, θ) and mn

∗ (σ, θ).
Let {q̂(θ), m̂n(θ), σ̂(θ)} be the solution to the system of (n + 2) equations consisting of

q = q∗(σ, θ), m
n = mn

∗ (σ, θ), and the envelope condition (8) set to zero, i.e. U ′(θ) = 0. Note
that over any interval of θ on which the individual rationality constraint (6) is binding, we
have U ′(θ) = 0, and so the solution to the relaxed problem is given by (q̂(θ), m̂n(θ)).

Also, let {q̃(θ), m̃n(θ)} be the solution to the relaxed problem in which the individual
rationality constraint is not imposed. The costate equation and the transversality condition
at θ = θ̄ then require σ̃(θ) = −(1− F (θ)). Thus q̃(θ) = q∗(σ̃(θ), θ) and m̃n(θ) = mn

∗ (σ̃(θ), θ).
Our next Theorem shows that the solution to the full (unrelaxed) problem has the following

properties. There exists θ̂ ∈ [θ, θ̄) such that on the interval [θ, θ̂] the individual rationality
constraint (6) is binding and the solution is given by (q̂(θ), m̂n(θ)). On the interval (θ̂, θ], the
individual rationality constraint is not binding, U(θ) is strictly increasing, and the solution is
given by (q̃(θ), m̃n(θ)).
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Theorem 4 Suppose Assumption (6) holds. Then there exists θ̂ ∈ (θ, θ̄) such that the optimal
mechanism is given by:

(q(θ),mn(θ)) =

{
(q̂(θ), m̂n(θ)) if θ ∈ [θ, θ̂],

(q̃(θ), m̃n(θ)) if θ ∈ [θ̂, θ̄].
(14)

The agent’s utility U(·) satisfies: U(θ) = 0 for all θ ∈ [θ, θ̂], and U(θ) > 0, U ′(θ) > 0 for all
θ ∈ (θ̂, θ̄].

Theorem 4 is related to Proposition 1 in Maggi and Rodriguez-Clare (1995) which charac-
terizes the optimal mechanism with a single costly message. As in their model, a non-trivial set
of types [θ, θ̂] are held at the reservation utility level in our optimal mechanism. So this prop-
erty is robust to the number of messages. However, there are important differences between
our results. First, in our model the agent sends multiple signals, and we focus on exploring
how the number of signals affects the optimal mechanism (see Lemma 3). Second, we prove
that the optimal mechanism exhibits no exclusion when costly signals are available (Lemma
2). This property is important, because it underscores that the optimality of exclusion in the
standard case without costly signals is rather fragile. Third, our strategy of proof is different
from Maggi and Rodriguez-Clare (1995), and we are able to establish our Theorem 4 and
Lemmas 2 and 3 on its basis (see below) under more general conditions. In particular, unlike
Maggi and Rodriguez-Clare (1995), we do not assume that the cost of a signal m depends only
on the difference (m − θ) and do not require the Hamiltonian to be concave and the hazard
rate to be monotone.

In large part, the value of Theorem 4 derives from the fact that it allows us to establish
Lemmas 2 and 3 characterizing the properties of the optimal mechanism.

Lemma 2 In the optimal mechanism, q(θ) > 0 for all θ > θ.

Thus, according to Lemma 2, no type who can generate a positive surplus is excluded in the
optimal mechanism as long as signal costs are positive, no matter how small.

The intuition for the absence of exclusion with costly signals is as follows. Any agent-type
that generates a positive surplus in the first-best is potentially profitable to the principal. The
reason some agent types are excluded in the second-best is that if the principal were to give
them a positive quantity, he would also have to raise the surplus of all agents with higher
valuations. But when signal costs are positive, this is no longer necessary: the principal can
prevent imitation by requiring agent-types that now receive a positive quantity to send costly
signals. By single crossing, higher agent types will incur lower signal costs, eliminating their
incentive to imitate.

Finally, we characterize the nature of the solution as the number of costly messages, n,
increases.

Lemma 3 (i) Suppose that Cn(m1, ...,mn, θ) =
∑n

i=1 ci(mi, θ). Then q̂(θ), m̂n(θ) and the

cut-off θ̂ are increasing in n.
(ii) Suppose that there exist v and v̄ such that v ≤ ∂2c

∂m2
i
≤ v̄ and v ≤ | ∂2c

∂θ∂mi
| ≤ v̄. Then

as n → ∞ we have: θ̂(n) → θ̄, q̂(θ) → qFB(θ), m̂n(θ) → γn(θ), and Cn(m̂n(θ), θ) → 0.
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In the next section, we use these results to derive the optimal number of messages which
the agent should be required to send.

5 Endogenous Signal Space

In this section, we study the optimal number of messages in a mechanism, when the principal
incurs a fixed cost F to elicit a each message, i.e. increase the size of the signal space by 1.
For example, the principal may have to incur such cost for developing and administering a
test, and/or processing the information received form the agent.

To simplify matters, we will treat n as a continuous variable. Let W (n) denote the princi-
pal’s expected surplus, gross of any fixed costs, in the optimal mechanism when the dimension
of the signal space is n. The principal then selects n to maximize W (n) − nF . We assume
that the agent’s signalling costs are additively separable across messages, i.e.

Cn(m1,m...,mn, θ) =

n∑
i=1

c(mi, θ),

and that
cmθ

cm
(m, θ) is increasing in m.

The latter assumption ensures that the solution to (11) is unique, and hence independent of
i. Henceforth, we shall therefore omit the subscript of the message mi. The optimal number
of messages n∗ is characterized in the following Lemma.

Lemma 4 Suppose that cmθ(m, θ)2 − cmmθ(m, θ)cm(m, θ) > 0. Then W (n) is a strictly con-
cave function, and the marginal benefit of an additional message is given by

dW (n)

dn
=

∫ θ̄

θ

(
cθ(m(θ), θ)cm(m(θ), θ)

cmθ(m(θ), θ)
− c(m(θ), θ)

)
f(θ)dθ (15)

To help us interpret the solution, let us define

ε = min
(m,θ)

cθ(m, θ)cm(m, θ)

cmθ(m, θ)c(m, θ)
− 1, η = max

(m,θ)

cθ(m, θ)cm(m, θ)

cmθ(m, θ)c(m, θ)
− 1

Then we have

Lemma 5 Suppose that c(m, θ) is such that ε > 0. Then

ε

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ ≤ dW (n)

dn
≤ η

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ

Under the conditions of this Lemma, the principal’s total cost of eliciting signals, nF , will
therefore lie between ε and η percent of the agent’s expected total signal cost. For example,
if c(.) is quadratic i.e., c(m, θ) = (m − θ)2, then ε = η = 1 so the principal and agent will
spend the same amount on sending and receiving the signals.
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We end by providing an example in which welfare and signalling costs are quadratic, and
the type distribution is uniform. Specifically, suppose that v(q, θ) = θq, h(q, θ) = 1

2q
2,

c(m, θ) = (m−θ)2, and F (θ) = θ for θ ∈ [0, 1]. Then for fixed n the solution to the principal’s
problem is given by:

q̃(θ) = m̃(θ) = 2θ − 1

q̂(θ) = m̂(θ) =
2n

2n+ 1
θ

θ̂(n) =
2n+ 1

2(n+ 1)

Furthermore, the principal’s marginal benefit of an additional message is dW (n)
dn = 1

12(n+1)2
,

and so the optimal number of signals equals n(F ) =
√

1/(12F ).
Recall that every message generates some amount of additional welfare, because the al-

location profile gets closer to the first-best when the agent has to send more messages (see
Lemma 3). To illustrate the relation between the fixed cost F and the welfare generated
by an extra message, let us express the fixed cost as a fraction of the potential surplus gain
∆W = WFB−WSB, where WFB (WSB) is the total welfare under the first-best (second-best)
quantity allocation. Since WFB = 1

6 and WSB = 1
8 , we have

n 1 2 3 4 5 6 7 8 9 10
F/∆W 50% 22.2% 12.6% 8% 5.6% 4% 3.2% 3.4% 2% 1.6%

Thus in this example the principal will elicit at least four messages if the fixed cost of eliciting
an extra message does not exceed 8% of the potential welfare gain. Note that in the process,
the agent will incur expected message costs of at least 32% of the potential welfare gain,
thereby dissipating a substantial portion of the benefit. It should also be noted that with
four signals, the allocation q is already close to the first-best, as q̂(θ) is within 11% of qFB(θ).

6 Conclusions

This paper demonstrates that in environments with misrepresentation costs, the ability of the
principal to offer mechanisms in which an agent sends several messages significantly expands
the set of implementable outcomes.

Our results have a number interesting implications for screening and signaling. In partic-
ular, they suggests that the problem of the dissipation of resources and effort in unproductive
signalling, the so-called ‘rat race,’ may not be as significant as previously thought. Our paper
also indicates that an optimal method of dealing with the problem of asymmetric information
regarding employees’ abilities may involve the design of testing and interviewing procedures,
rather than on-the-job screening via incentive schemes. This can explain why incentive schemes
offered in a variety of industries are not as steep and high-powered as incentive literature may
suggest. Indeed, this papers indicates that an employer can obtain a good estimate of a job-
candidate’s ability and at a low cost, if the tests and interviews can be designed to have the
following properties: (i) Each test identifies a candidate’s ability accurately if the candidate
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does not attempt to manipulate the results of the test by expending effort; (ii) A candidate
incurs some cost of effort when (s)he attempts to misrepresent her type.

In our setting, the marginal cost of a message/signal can depend on the content and number
of other messages/signals sent by the agent. For example, the amount of effort that an agent
of ability θ may need to exert in the n-th test to perform at a level corresponding to ability
θ′ ̸= θ may depend on how hard she worked to prepare for other tests and how many other
tests she has taken. Our results hold when the effect of the true ability θ on the cost of sending
signal m ̸= γ(θ) does not go to zero “too quickly’ in n. Intuitively, the learning process cannot
be too fast so that performing at a certain level in a testing procedure involving n + 1 tests
is slightly more costly and requires a bit more effort than performing at the same level in a
testing procedure consisting of n tests.

It is conceivable that there may exist fixed costs incurred either by the principal or the
agent in association with each test or interview. The presence of such costs would limit the
feasible number of interviews/tests from above and perfect screening may become too costly.
Still, our results indicate that multi-test procedures would dominate the ones relying on one
test. Furthermore, it is likely that the fixed costs would be associated with a particular test,
and not a particular job-candidate. Then test-specific fixed costs will be amortized over all the
job-candidates who undergo it, and therefore would create less of an obstacle for increasing
the number of tests. In this case, our model predicts that larger firms who interview many
applicants will put more emphasis on rigorous testing and evaluation of candidates before
hiring, rather than on providing on-the-job incentives. This appears to be broadly consistent
with reality.

7 Appendix

We start with the following Lemma:

Lemma 6 An allocation profile x : Θ → X is implementable if and only if there exists a
signal rule µn : Θ → Mn s.t.

u(x(θ), θ)− Cn(µn(θ), θ) ≤ u(x(θ′), θ)− Cn(µn(θ′), θ), for all θ, θ′ (16)

Proof : Consider a mechanism g̃ : Θ×Mn → X defined by

g(θ′′,mn) =

{
x(θ) if mn = µn(θ),
x, otherwise.

Then (2) becomes (16). Thus x is implementable.
Conversely, suppose that (16) is violated for some θ and θ′. Suppose to the contrary

that there exists a mechanism g that implements x. Then by selecting θ′′ = τ(θ′) and
mn = µn(θ′) the agent of type θ would obtain utility u(g(τ(θ′), µn(θ)), θ) − Cn(µn(θ′), θ) >
u(g(τ(θ), µn(θ)), θ)− Cn(µn(θ), θ), contradicting that g implements x.
Proof of Theorem 1:

Endow Ω with the uniform topology, i.e. define the uniform metric d on Ω by d(x,y) =
sup{||x(θ)−y(θ)||X : θ ∈ Θ}. Let ΩL ⊂ Ω be the set of allocation profiles that are Lipschitz
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with Lipschitz constant L ≥ 0, i.e. ΩL = {x ∈ Ω : ||x(θ) − x(θ′)|| ≤ L||θ − θ′||}. Also
define Σn = {µ : Θ → Mn} to be the space of all message functions, and endow Σn with
the product topology (the topology of pointwise convergence). Since Mn is compact, the
Tychonoff theorem guarantees that Σn is compact in the product topology. Thus Σn is
sequentially compact.

First, we establish that En is a closed subset of Ω. Indeed, let {xi}∞i=1 be a sequence in
En s.t. xi → x ∈ Ω. Then there exists a sequence of {µi(·)} ⊂ Σn such that (16) holds
for {xi(·), µi(·)}. Let µ be the limit of a convergent subsequence of {µi}, and renumber the
subsequence so that µi → µ. Observe that xi → x and µi → µ imply that xi(θ) → x(θ) and
µi(θ) → µ(θ) for each θ ∈ Θ. Since weak inequalities are preserved by limit operations, it
follows that {x, µ} satisfies (16), and hence that x ∈ En. Thus En is closed.

Second, we establish that there exists a L̂ < ∞ and y ∈ ΩL̂ s.t. y /∈ En. Suppose to
the contrary that ΩL ⊂ En for all L ∈ R+. Choose any z ∈ Ω. Because z is measurable,
there exist sequences {zi} and {Li} with Li → ∞ and zi → z such that zi ∈ ΩLi for all i.
Since ΩLi ⊂ En for all i, and since En is closed, it follows that z ∈ En. This contradicts the
assumption that ΩrEn ̸= ϕ.

Third, let x ∈ En solve min
z∈En∩ΩL̂ d(y, z). Such an x exists, because d(y, ·) is continuous

on X, and because En∩ L̂ is closed and non-empty. Now for any ε > 0 let xε(θ) = (1 −
ε)x(θ) + εy(θ). It is immediate that xε ∈ ΩL̂ r En. Indeed, ΩL̂ is a convex set, and
d(x, xε) ≤ (1− ε)d(x, y) < d(x, y) so xε /∈ En.

Finally, we claim that xε(·) ∈ En+1 when ε > 0 is sufficiently small, establishing that
En+1 r En ̸= ϕ. To prove the claim, let ∆(θ) = x(θ) − y(θ), W = maxX×Θ ||ux(x, θ)||,
M = maxX×Θ ||uxx(x, θ)||. Then:

|(u(xε(θ), θ)− u(y(θ), θ))− (u(xε(θ′), θ)− u(y(θ′), θ))|

=

∣∣∣∣∫ ε

0
eux(x

ε(θ), θ)∆(θ)de−
∫ ε

0
eux(x

ε(θ′), θ)∆(θ′)de

∣∣∣∣
=

∣∣∣∣∫ ε

0
e
{
(ux(x

ε(θ), θ)− ux(x
ε(θ′), θ)}∆(θ) + ux(x

ε(θ′), θ)(∆(θ)−∆(θ′)
}
de

∣∣∣∣
≤ εML̂ ||θ − θ′|| d(x, y) + 2εWL̂ ||θ − θ′|| (17)

Setting S = L̂{Md(x, y) + 2W}, we thus have

u(xε(θ), θ)− u(xε(θ′), θ) ≥ u(x)(θ), θ)− u(x(θ′), θ)− εS||θ − θ′||. (18)

Since xε ∈ En there exists µn(·) such that

u(x(θ, T ), θ)− u(x(θ′, T ), θ) ≥ Cn(µn(θ), θ)− Cn(µn(θ′), θ). (19)

To complete the proof of the claim, let us show that x(t, θ) is implementable with message
rule µn+1 = {µn, γn+1}. Thus, Cn+1(µn+1(θ′′), θ′′) = Cn(µn(θ′′), θ′′) for all θ′′ ∈ Θ. Further,

Cn+1(µn(θ′), γn+1(θ
′), θ)−Cn+1(µn(θ′), γn+1(θ), θ) ≥ δn+1||γn+1(θ)−γn+1(θ

′)|| ≥ δn+1rn+1||θ−θ′||
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Using the above, we have:

Cn(µn(θ), θ)− Cn(µn(θ′), θ) = Cn+1((µn+1(θ)), θ)− Cn+1((µn(θ′), γn+1(θ)), θ)

≥ Cn+1(µn+1(θ), θ)− Cn+1(µn+1(θ′), θ) + δn+1rn+1||θ − θ′|| (20)

From (18),(19) and (20) it follows that for all θ, θ′ ∈ Θ

u(x(t, θ), θ)− u(x(t, θ′), θ) ≥ Cn+1(µn+1(θ), θ)−Cn+1(µn+1(θ′), θ) + (δn+1rn+1 − εS)||θ − θ′||
(21)

Therefore, upon taking ε ≤ δn+1rn+1/S, we obtain that {x(t), µn+1} satisfies (16).

Proof of Theorem 2.
Lemma 6 requires the following incentive constraint to hold for all θ, θ′:

u(x(θ′), θ)− u(x(θ), θ) ≤ Cn(γn(θ′), θ)− Cn(γn(θ), θ)

Assumptions 3 and 4 imply that this incentive constraint holds if KL ≤ rn1−αc. Thus x is

implementable if n ≥ (KL
rc )

1
1−α . No communication costs are incurred because the agent of

type θ sends a collection of messages such that mi = γi(θ). Q.E.D.

Proof of Theorem 3. First, we show that for any given a pair of twice continuously differ-
entiable functions q : Θ → Q and U : Θ → R there exists N < ∞, and a sequence of transfer
and signal rules (tn,mn), such that for all n ≥ N and all θ ∈ Θ:

U(θ) ≡ v(q(θ), θ) + tn(θ)− Cn(mn(θ), θ) = max
θ′∈Θ

{v(q(θ′), θ) + t(θ′)− Cn(mn(θ′), θ)} (22)

(i) First, let us construct the signal rule mn(θ).
Let z : Θ → Rland for each i select mi(θ) = γi(θ) + z(θ). We select z(θ) as follows. If

(22) holds, then the envelope theorem implies that

DθU(θ) = Dθv(q(θ), θ)−DθC
n(mn(θ), θ) (23)

For each θ, (23) consists of l equations in the l unknown variables z(θ). Assumption 5(i)
implies that the mapping Cn

θ (·, θ) is injective, so that the solution z(θ) to (23) is unique.
(ii) Next, we construct the transfer rule tn(θ).

Given the signal rule constructed in part (i), select the transfer rule tn(·) as follows:

tn(θ) = max
θ′∈Θ

{v(q(θ), θ′)− Cn(mn(θ), θ′)− U(θ)} (24)

By the envelope theorem, t(·) is a.e. differentiable, and at points of differentiability we have:

Dθt
n(θ) = Dqv(q(θ), θ)Dθq(θ)−DmnCn(mn(θ), θ)Dθm

n(θ). (25)

Furthermore, since q(.) and mn(.) are continuously differentiable, t(·) is continuously differ-
entiable everywhere, with derivative given by (25).
(iii) Let us show that mn(θ) → γn(θ) and Dθm

n(θ) → Dθγ
n(θ), uniformly in θ.
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Let g(θ) = Dθv(q(θ), θ)−DθU(θ). It follows from (23) and Assumption 5(i) that

||g(θ)|| = ||DθC
n(mn(θ), θ)−DθC

n(γn(θ), θ)|| ≥ ω

nα
||mn − γn(θ)|| ≥ ωn1−α||z(θ)|| (26)

Furthermore, since g is continuous and Θ is compact, it follows from the Weierstrass Theorem
that there exists a constant λ > 0 s.t. ||g(θ)|| ≤ λ for all θ. Hence (26) implies ||z(θ)||
≤ λ

ωn
−(1−α) → 0. We conclude that mn(θ) → γn(θ), uniformly in θ, and therefore that

Dθm
n(θ) → Dθγ

n(θ), uniformly in θ.
(iv) Next, let us demonstrate the incentive compatibility of our mechanism.

Let V (θ′; θ) be the payoff of agent-type θ who misrepresents herself as θ′

V (θ′; θ) = v(q(θ′), θ)− tn(θ′)− Cn(mn(θ′), θ) (27)

By (25), we have Dθ′V (θ, θ) = 0 for all θ ∈ Θ. Therefore

Dθ′V (θ′, θ) = Dqv(q(θ
′), θ)qθ(θ

′)−Dθt
n(θ′)−DmnCn(mn(θ′), θ)Dθm

n(θ′)−Dθ′V (θ′, θ′)

= {Dqv(q(θ
′), θ)−Dqv(q(θ

′), θ′)}Dθq(θ
′)−

{DmnCn(mn(θ′), θ)−DmnCn(mn(θ′), θ′)}Dθm
n(θ′)

Using (27), we may compute the directional derivative of V (·, θ) at θ′ in the direction of θ:

Dθ′V (θ′, θ)(θ − θ′) = {Dqv(q(θ
′), θ)−Dqv(q(θ

′), θ′)}Dθq(θ
′)(θ − θ′)

−{DmnCn(mn(θ′), θ)−DmnCn(mn(θ′), θ′)}Dθm
n(θ′)(θ − θ′)

Let β = maxθ′,θ∈Θ ||vθq(q(θ′), θ)qθ(θ′)||. Then using the mean value theorem

Dθ′V (θ′, θ)(θ−θ′) ≥ −β || θ−θ′||2−(θ−θ′)τ

{
n∑

i=1

D2
θmi

Cn(mn(θ′), θi)(Dθγi(θ
′) +Dθz(θ

′))

}
(θ−θ′)

where θi = θ + εi(θ
′ − θ), for some εi ∈ (0, 1). It follows from Assumption 2 and Assump-

tion 5(iii) that (θ − θ′)τ {
∑n

i=1Dθmi
Cn(mn(θ′), θi) (Dθγi(θ

′) +Dθz(θ
′))} (θ − θ′) ≤ −(1 −

||zθ||
r )ωn−α||θ − θ′||2. Therefore

Dθ′V (θ′, θ)(θ − θ′) ≥ {(1− ||zθ||
r

)ωn1−α − β }||θ − θ′||2

Let N be such that (1− ||zθ||
r )ωn1−α−β > 0 for all n ≥ N . Then for n ≥ N , and all θ′ ̸= θ the

directional derivative Dθ′V (θ′, θ)(θ − θ′) is positive, implying that θ′ = θ uniquely maximizes
V (θ′, θ).
(v) Next, let us show that Cn(mn(θ), θ) → 0.

It follows from the mean value theorem that

Cn(mn(θ), θ) = DmnCn(m̃n(θ), θ)(mn(θ)− γn(θ))
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where m̃n(θ) = mn(θ)+ ε̃(θ)(mn(θ)−γn(θ)), for some ε̃(θ) ∈ (0, 1). Hence from Assumption
5(ii),

Cn(mn(θ), θ) ≤ ||
∑
i

DmiC
n(m̃n(θ), θ)|| ||z(θ)|| (28)

≤ ω̄n1−α||z(θ)||2 ≤ (
B

ω
)2ω̄n−(1−α)

Consequently, Cn(mn(θ), θ) → 0, uniformly in θ.
Finally, given any pair of continuously differentiable functions q : Θ → Q and t : Θ → R,

let U(θ) = v(q(θ), θ) − t(θ) and select {tn,mn} as defined above. It then follows from (28)
that Cn(mn(θ), θ) → 0, and hence from (24) that tn(θ) → t(θ), uniformly in θ. This com-
pletes the proof. Q.E.D.

Proof of Theorem 4: The proof will proceed through the following steps. First, we will
establish the existence of a point θ̂ ∈ (θ, θ), such that U(θ) = 0 if and only if θ ≤ θ̂. Second,
we will show that U ′′(θ) > 0 for all θ ≥ θ̂. This implies that on the interval [θ, θ̂] the solution
is governed by {q̂(θ), m̂n(θ)}, and that on the interval [θ̂, θ̄] it is governed by {q̃(θ), m̃n(θ)}.
To complete the proof, we will establish that the solution to our relaxed program (7) subject
to (6) and (8) also satisfies the agent’s second-order conditions, and hence solves the full
unrelaxed program (7).

To begin, define θ̂ = inf{θ : U(θ) > 0}. First, we show that θ̂ ∈ (θ, θ̄). To establish that
θ̂ < θ̄, suppose to the contrary that θ̂ = θ̄. Then, since U(θ) = 0 for all θ, the solution to the
relaxed problem is given by {q̂(θ), m̂n(θ), σ̂(θ)}. By the transversality condition at θ̄, σ̂(θ̄) ≥ 0.
So, the first-order conditions (10) and (11) imply that q̂(θ̄) ≥ q∗(θ̄) and m̂i(θ̄) ≥ γi(θ). Since
vqθ > 0 and Cn

θmi
< 0, we then have

U ′(θ̄) = vθ(q(θ̄), θ̄)− Cn
θ (m

n(θ̄), θ̄) > vθ(q
∗(θ̄), θ̄)− Cn

θ (γ
n(θ̄), θ̄) > 0

where the final inequality follows from the fact that Cn
θ (γ

n(θ), θ) = 0. But U ′(θ̄) > 0 contra-

dicts the presumption that θ̂ = θ̄, i.e. that U ′(θ) = 0 for all θ ∈ [θ, θ̄]. So, we cannot have
θ̂ = θ̄.

To prove that θ̂ > θ suppose, to the contrary, that U(θ) > 0 for all θ > θ. Then the
solution to the relaxed problem is given by {q̃(θ), m̃n(θ)}. In particular, from the first-order
condition (11) it follows that m̃i(θ) < γi(θ) for all i. But since q̃(θ) = qSB(θ) = 0 for all
θ ∈ [θ, θ∗], for such θ we would then have

U ′(θ) = vθ(0, θ)− Cn
θ (m̃

n(θ), θ) < 0 (29)

where the inequality holds because vθ(0, θ) = 0, and because m̃n(θ) < γn(θ) implies Cn
θ (m̃

n(θ), θ) >
0. Since U(θ) = 0, (29) then shows that individual rationality is violated on (θ, θ∗]. This
contradiction establishes that θ̂ > θ.

Next, we claim that U(θ) > 0 for all θ > θ̂. Indeed, let θ+ = sup{t : U(θ) > 0 for all
θ ∈ (θ̂, t)}, and suppose to the contrary that θ+ < θ̄. Then on the interval (θ̂, θ+) the solution
is given by q∗(σ, θ) and mn

∗ (σ, θ) where σ′(θ) = f(θ).
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In Lemma 7 below, we show that the Hamiltonian (9) is supermodular in ((q,mn), θ) on any
interval where ρ(θ) = 0, and in particular on (θ̂, θ+). In combination with Assumption 5(iii)
this implies that q(θ) = q∗(σ(θ), θ) and mn(θ) = mn

∗ (σ(θ), θ) which are both nondecreasing
in θ on the interval (θ̂, θ+). Since by assumption we also have vθθ − Cn

θθ > 0 it follows from

(8) that U ′(θ) is increasing (θ̂, θ+). Because U(θ̂) = U ′(θ̂) = 0 this shows that U(θ+) > 0,
contradicting the definition of θ+. Thus θ+ = θ̄.

Since we have shown that U(θ) = 0 for θ ∈ [θ, θ̂] and U(θ) > 0 for θ ∈ (θ̂, θ̄], we conclude
that the solution to the relaxed problem is given by {q̂(θ), m̂n(θ), σ̂(θ)} for θ ∈ [θ, θ̂], and by
{q̃(θ), m̃n(θ)} for θ ∈ [θ̂, θ̄].

It remains to show that the solution (14) satisfies (5). This will be the case if the following
second-order condition is satisfied:

vqθqθ −
n∑

i=1

Cn
mi

(mn(θ), θ)m′
i(θ) ≥ 0

On the interval [θ, θ̂) we have U ′(θ) ≡ 0, and hence

U ′′(θ) = vqθqθ + vθθ − (

n∑
i=1

Cn
mi

(mn(θ), θ)m′
i(θ) + Cn

θθ) = 0

Therefore

vqθqθ −
n∑

i=1

Cn
mi

(mn(θ), θ)m′
i(θ) = Cn

θθ − vθθ ≥ 0.

On the interval (θ̂, θ̄] we have (q(θ),mn(θ)) = (q̃(θ), m̃n(θ)), and Assumptions 6(ii)-(iv) imply
that the Hamiltonian is supermodular in (q, θ) and in (mn, θ), and so q̃θ ≥ 0 and Dθm̃

n ≥ 0,
implying vqθ q̃θ −

∑n
i=1C

n
mi

(mn(θ), θ)m′
i(θ)m̃

′
i ≥ 0. Q.E.D.

The following auxiliary result is used in the proof of Theorem 4.

Lemma 7 Suppose that part (i) and (ii) of Assumption 6 hold. Then on any interval on
which ρ(θ) = 0 the Hamiltonian (9) is supermodular in ((q,mn), θ).

Proof: First, we claim that in any solution to the optimal control problem the costate
variable σ(θ) satisfies the inequalities −(1− F (θ)) ≤ σ(θ) ≤ 0.

Indeed, since q(θ) is optimal, we must have q(θ) ≤ qFB(θ). Because vqθ > 0, it then follows
from the first-order condition (10) that σ(θ) ≤ 0. In conjunction with the transversality
condition at θ̄, the latter inequality implies σ(θ̄) = 0. Furthermore, integrating the costate

equation (12) yields σ(θ) = σ(θ̄) −
∫ θ̄
θ (f(θ) − ρ(θ))dθ = −(1 − F (θ)) +

∫ θ̄
θ ρ(θ)dθ. Since

ρ(θ) ≥ 0 we therefore have σ(θ) ≥ −(1− F (θ)).
Next, let us show that on any interval on which ρ(θ) = 0 the function

Ψ(q, θ) ≡ vq(q, θ)− hq(q, θ) +
σ(θ)

f(θ)
vqθ(q, θ)
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is increasing in θ. We may compute:

Ψθ(q, θ) ≡ vqθ − hqθ + (
σ

f
)′vqθ(q, θ) +

σ

f
vqθθ

= 2vqθ − hqθ +
σ

f
(vqθθ −

f ′

f
vqθ)

Since vqθ > 0, hqθ < 0, and σ ≤ 0, it follows that Ψθ > 0 if vqθθ − (f ′/f)vqθ ≤ 0. Meanwhile,

if (vqθθ − f ′

f vqθ) > 0, then σ(θ) ≥ F (θ) − 1 and Assumption (5)(i) imply Ψθ ≥ 2vqθ − hqθ +
F (θ)−1

f (vqθθ − (f ′/f)vqθ) > 0. A similar argument shows that for each i the function

Φi(m
n, θ) =

∂Cn

∂mi
(mn, θ) +

σ(θ)

f(θ)

∂2Cn

∂mi∂θ
(mn, θ)

is decreasing in θ. Q.E.D.

Proof of Lemma 2:
First, let us demonstrate that in the optimal mechanism, q̂(θ) > 0 for all θ ∈ (θ, θ̂]. Suppose

instead we had q̂(θ) = 0 for some θ ∈ (θ, θ̂]. Let us show that this implies m̂n(θ) = γn(θ) and
σ̂(θ) = 0. Note that U ′(θ) = 0 because θ ≤ θ̂. Since vθ(0, θ) = 0, equation (8) therefore yields
Cn
θ (m̂

n(θ), θ) = 0. We will establish that m̂n(θ) = γn(θ) is a solution to this equation. Indeed,
since Cn(γn(θ), θ) ≡ 0, we have

∑n
i=1C

n
mi

(γn(θ), θ)+Cn
θ (γ

n(θ), θ) = 0. Since Cn(mn, θ) takes
on a global minimum at mn = γn(θ), it follows that Cn

mi
(γn(θ), θ) = 0. Thus mn(θ) = γn(θ)

is a solution to the equation Cn
θ (m

n(θ), θ) = 0.
Next, by Equation (11), σ ≷ 0 implies that mi(θ) ≶ γi(θ) for all i. Because C̄mθ < 0

we have Cn
θ (m̂

n(θ), θ) ≶ 0 as σ ≷ 0. Thus Cn
θ (m̂

n(θ), θ) = 0 implies m̂n(θ) = γn(θ) and
σ̂(θ) = 0.

But substituting σ̂(θ) = 0 into equation (10) then yields vq(q̂(θ), θ) − hq(q̂(θ), θ) ≤ 0,
contradicting the assumption that vq(0, θ) − hq(0, θ) > 0. So we must have q̂(θ) > 0 for all
θ > θ.

Further, by Theorem 4, U(θ) > 0 on (θ̂, θ̄], so we also have q̃(θ) > 0 on this interval. Q.E.D.

Proof of Lemma 3: First, we establish that q̂(θ) = q∗(σ̂(θ), θ) and m̂n(θ) = mn
∗ (σ̂(θ), θ) are

nondecreasing in n. To see this, note that q∗(σ, θ) and mn
∗ (σ, θ) are independent of n because

Cn(m1, ...,mn, θ) =
∑n

i=1 ci(mi, θ). Furthermore, since the Hamiltonian is supermodular in
σ, it follows that q∗(σ, θ) and mn

∗ (σ, θ) are nondecreasing in σ. We now claim that σ̂(θ) is
nondecreasing in n, thereby proving that q̂(θ) and m̂n(θ) are nondecreasing in n.

To prove the claim, recall that σ̂(θ) is defined as the solution to

Υ(σ, θ, n) ≡ vθ(q∗(σ, θ), θ)− Cn
θ (m

n
∗ (σ, θ), θ) = 0.

Since vθq > 0 and ∂2Cn

∂mi∂θ
< 0 we have Υσ ≥ 0. Furthermore, Υ(σ, θ, n) is decreasing in n

because Cn(m1, ...,mn, θ) =
∑n

i=1 ci(mi, θ). Therefore σ̂(θ) is increasing in n.

Next, let us show that θ̂(n) is nondecreasing in n. Observe that θ̂(n) is the solution
in θ to the equation q̂(θ, n) = q̃(θ). We now claim that for θ > θ̂(n) it is the case that
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q̃(θ) = q∗(σ(θ), θ) > q∗(σ̂(θ), θ) = q̂(θ, n). Since q̂(θ, n) is increasing in n, this then implies
that θ̂(n) increases in n.

To see that the claim holds, recall that U ′(θ) > 0 for θ > θ̂(n). Now because q∗ and mn
∗ are

nondecreasing in σ, and because vqθ > 0 and Cmθ < 0, the inequality U ′(θ) = vθ(q∗(σ(θ), θ), θ)
− Cn

θ (m
n
∗ (σ(θ), θ)), θ) > vθ(q∗(σ̂(θ), θ), θ)− Cn

θ (m
n
∗ (σ̂(θ), θ), θ)), θ, n) = 0 can hold only if

σ(θ) > σ̂(θ), implying σ(θ) > σ̂(θ), and hence q̃(θ) = q∗(σ(θ), θ) > q∗(σ̂(θ), θ) = q̂(θ, n).
(ii) We will first prove that limn→∞ σ̂(θ, n) = 0. Let σ̂∞(θ) be the limit of any con-

vergent subsequence of {σ̂(θ, n)}∞n=1. By renumbering the indices of the subsequence, we
may without loss of generality assume that σ̂(θ, n) → σ̂∞(θ) . Suppose that contrary to the
desired result, we had σ̂∞(θ) < 0. Using the mean value Theorem, we have ∂Cn

∂mi
(m̂i, m̂

n
−i, θ)−

∂Cn

∂mi
(γi(θ), m̂

n
−i, θ) =

∂2Cn

∂m2
i
(m̄i, m̂

n
−i, θ)(m̂i−γi(θ)), for some m̄i ∈ (mi, γi). Since

∂Cn

∂mi
(γi(θ),m

n
−i, θ) =

0, it follows from (11) that

(m̂i(θ)− γi(θ)) = −σ̂(θ, n)
∂2Cn

∂θ∂mi
(m̂n(θ), θ)

∂2Cn

∂m2
i
(m̄i, m̂n

−i(θ), θ)
(30)

Applying the mean value Theorem once more, we also have

Cn
θ (m̂

n, θ) =

n∑
i=1

∂2Cn

∂θ∂mi
(m̄n, θ)(m̂i(θ)− γi(θ)), (31)

where m̄n = γn(θ) + ε(θ)(m̂n − γn(θ)), for some ε(θ) ∈ (0, 1). Using the assumption that
∂2Cn

∂m2
i
≤ v̄, and | ∂2Cn

∂θ∂mi
| ≥ v, (30) and (31) yield

Cn
θ (m̂

n(θ), θ) ≥ −nσ̂(θ, n)
v

v̄
(32)

Since σ̂(θ, n) → σ̂∞(θ) < 0, we would therefore have Cn
θ (m̂

n(θ), θ) → ∞. But because vθ(q, θ)
is bounded, this contradicts 8, thereby establishing that limn→∞ σ̂(θ, n) = 0.

Next, we argue that limn→∞ θ̂(n) = θ̄. Because σ̂(θ, n) → 0, the first-order conditions
(10) and (11) imply that limn→∞ q̂(θ, n) = qFB(θ) and limn→∞ m̂(θ, n) = θ. Since θ̂(n) is
the solution to the equation q̂(θ, n) = q̃(θ) = qSB(θ), and since qFB(θ) > qSB(θ) for every
θ ∈ (0, θ̄) we must have limn→∞ θ̂(n) = θ̄.

It remains to prove that Cn(m̂n(θ), θ) → 0. Since Cn(γn(θ), θ) = 0 and Cn
θ (γ

n(θ), θ) = 0,
it follows from Taylor’s Theorem that

Cn(m̂n(θ), θ) =

∞∑
i=1

(m̂i − γi(θ))
2∂

2Cn

∂m2
i

(mn, θ) (33)

Now (30) yields |m̂i − γi(θ)| ≤ |σ̂(θ, n)| v̄v , so (33) implies Cn(m̂n(θ), θ) ≤ nσ̂2(θ, n) v̄
3

v2
. Also,

(31) implies n|σ̂(θ, n)| v
v̄ ≤ |Cn

θ (m̂
n, θ)| ≤ max(q,θ) vθ = k. Thus Cn(m̂n, θ) ≤ k |σ̂(θ, n)|

v̄4

v3
→ 0. Q.E.D.
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Proof of Lemma 4: Since the solution to the principal’s problem is unique the value function
W is continuously differentiable, and

dW (n)

dn
=

∫ θ̄

θ

∂H

∂n
(q,m,U, σ, n, θ)dθ

(Seiersstad and Sydsaeter, 1999, p. 217). Using

∂H

∂n
= −c(m(θ), θ)f(θ)− σ(θ)cθ(m(θ), θ)

and substituting for σ(θ) from the first-order condition (11) yields

∂H

∂n
= f(−c+

cθcm
cmθ

)

proving (15). Furthermore,

d

dn

−ccmθ + cθcm
cmθ

=
∂

∂m

−ccmθ + cθcm
cmθ

∂m

∂n

=
cθ{c2mθ − cmmθcm}

c2mθ

∂m

∂n

In Lemma 3 it is established that ∂m
∂n > 0 on [θ, θ̂(n)). Since cθ < 0 it follows from the

assumption c2mθ − cmmθcm > 0 that ∂H
∂n > 0 on [θ, θ̂(n)). Furthermore, on (θ̂(n), θ̄] we have

∂m
∂n = 0, and hence ∂H

∂n = 0. We conclude that W ′(n) is strictly decreasing in n i.e., W (n) is
strictly concave. Q.E.D.

Proof of Lemma 5: By the definition of ε and η we have

εc ≤ cmcθ
cmθ

− c ≤ ηc

and so,

0 < ε

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ ≤ dW (n)

dn
≤ η

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ.

Q.E.D.
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