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Abstract

We study mechanism design and signalling in environments where misrepresenting pri-

vate information is costly. Specifically, a privately informed agent has to take several

signalling actions, send several messages or undergo tests in which it is costly for her

to misrepresent her type. We establish conditions under which the set of implementable

allocation profiles strictly increases in the number of messages while the overall communi-

cation cost diminishes. We then derive an optimal screening mechanism in such a setting.

A surprising property of this mechanism is the absence of exclusion. Particularly, every

consumer type whose valuation for the good exceeds the marginal cost of production is

allocated a positive quantity. Reexamining job-market signalling via education in our

set-up, we show that welfare losses from unproductive signalling will be small if students

signal via a grade point average based on multiple courses rather than via duration of

schooling. Thus, our results explain why employers often prefer to screen applicants via

multiple interviews rather than via menus of contracts, and why the social losses from

signalling activities (“rat race”) may not be significant.
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1 Introduction

In this paper we study mechanism design and signalling in settings where agents incur some

cost of conveying and misrepresenting their private information. These costs may exist for

several reasons. First, in order to signal and differentiate themselves agents may have to take

costly actions extraneous to the socially productive activities (e.g. excessive education).

Second, misrepresenting the truth may require costly actions, such as acquiring skills

and/or technology for manufacturing evidence, and taking effort to conceal one’s information

or hide evidence that reveals the true state of the world. For example, in order to obtain a

supplier contract, or to qualify for a loan, win a grant or a promotion, a firm or an individual

may need to be perceived as highly productive, successful and/or creditworthy. This goal may

be attained by exhibiting “evidence” exaggerating prior performance and concealing the risk of

default or non-performance. Yet, the production of such favorable but inaccurate “evidence”

would normally require expending cost and effort.1

Third, an individual may find it costly to misrepresent the truth for psychological or ethical

reasons. Such individual may experience stress or discomfort from lying. Behavioral psychol-

ogists have extensively documented the physical symptoms associated with the emotional

discomfort that people experience when lying.

Apart from some mild technical conditions, our model relies on two simple main assump-

tions:

• The first-best or least cost messages vary across agent types;

• Agents send multiple signals or messages.

We believe that these key two parts of our approach are natural, well motivated, and

strongly grounded in theory and empirics.

To highlight this, let us start with the first main assumption, that the first-best or least

costly messages are type dependent. Consider one of the prime examples of our paper, Spence’s

education model. In this set-up, it is compelling to envisage that individuals derive a direct

utility from learning, and that this utility is correlated with ability. Indeed, driven by in-

tellectual curiosity, entertainment value or a taste for knowledge and problem-solving, most

people like to learn. It is natural to posit that some people like learning more than others,

and that their taste for learning increases with ability. As a consequence, each type has a

1A prominent example of state falsification efforts concerns college admissions tests. Educators have long

been concerned that extensive test preparation and tutoring activities by the privileged skew the measurement

of underlying student ability. Indeed, the College Board recently announced plans to redesign the SAT test to

address this issue (Richard Perez-Pena, “Then and Now: A Test that Aims to Neutralize Advantages of the

Privileged,” New York Times, March 15, 2014).
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different least-cost level of education. Alternatively, education may enhance productivity, and

may do so more for higher ability individuals. Indeed, Spence himself explicitly recognized

this possibility in his retrospective review on the signaling model (Spence, 2002). It is fair

to say that the assumption of type dependent least cost signals is ubiquitous in the signaling

literature, spanning a wide range of applications such as limit pricing by a monopolist (Mil-

grom and Roberts (1982)), advertising (Bagwell (2007)), oligopoly pricing (Mailath (1989)),

dividend signaling (Miller and Rock (1985)), electoral competition (Banks (1990)), bequests

(Bernheim and Severinov (2003)) and conspicuous consumption (Ireland (1994)).

Furthermore, there are several strands of influential literature on screening that make the

same or similar assumption that the least cost message is type dependent. First, there is an

extensive literature on certifiable statements or hard evidence whose availability varies with

type. This literature, which originates in the seminal contributions of Milgrom (1981) and

Grossman (1981), assumes that for any agent-type some messages are costless, while others

are infinitely costly, and that the set of costless messages varies with types. The extensive

literature that flows from these papers (e.g. Seidmann and Winter (1997), Hagenbach, Koessler

and Perez-Richet (2014)) makes the strong assumption that every type can send some set of

messages that uniquely identify it.

A related branch of literature on mechanism design and implementation with hard evi-

dence is more permissive in its assumptions, requiring only partial verifiability, but retains the

assumption of binary communication cost so that each message is either costless or infinitely

costly for a given type. It explicitly allows for the presentation of multiple pieces of evidence,

as we do. This literature includes Green and Laffont (1986), Lipman and Seppi (1995), Forges

and Koessler (2005), Bull and Watson (2007), Caillaud and Tirole (2007), Deneckere and Sev-

erinov (2008), Sher and Vohra (2015), Ben Porath and Lipman (2012), and Hart, Kremer and

Perry (2017). A binary communication cost structure also underlies the literature on honesty

(Alger and Ma (2003), Alger and Renault (2006, 2007), Kartik (2009), and Severinov and

Deneckere (2006)).

In contrast to both of these lines of literature, our paper makes the much milder assumption

that all types can send any message available to any other type, but at a cost that is increasing

in the magnitude of type misrepresentation. In this assumption we follow the literature on

costly state falsification, which originates in the work of Lacker and Weinberg (1989), and

includes Maggi and Rodriguez-Clare (1995), Crocker and Morgan (1998), Crocker and Slemrod

(2005), Goldman and Slezak (2006), Kartik (2009), and Picard (2013).

The costly state falsification literature spans a wide range of applications, including insur-

ance and tax fraud, financial misreporting, and legal evidence production. In a legal setting,

Bull (2008a) studies costly evidence production and disclosure under complete information.
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Bull (2009) compares inquisitorial and adversarial litigation systems when evidence may be

suppressed at cost. Following reporting scandals such as Enron, managerial misreporting has

attracted a lot of attention in the accounting and finance literature. Models involving costly

misrepresentation of earnings include Fisher and Verecchia (2000), Goldman and Slezak (2006),

Guttman, Kadan and Kandel (2006) and Caskey, Nagar and Petacchi (2010).

Our assumption that misrepresenting type is costly and type-dependent is also motivated

by the considerable empirical and experimental evidence showing that agents do not lie as often

as would be warranted by maximizing their material payoffs. In the tax literature, Erard and

Feinstein (1994) report findings that some tax payers are willing to bear their full tax burden

even when presented with financial incentives to underreport their incomes. Survey evidence

indicates that while a group of people has no qualms about inflating insurance claims, a greater

fraction considers it unacceptable to do so (Tennyson (1997)). A large body of experimental

evidence initiated by Gneezy (2005) shows that there are intrinsic costs to misrepresentation,

which typically depend upon the “size of the lie.” Aversion to misrepresentation or “lying

costs” have also been extensively documented in the broader literature on finance, psychology

and sociology. Abeler, Nosenzo and Raymond (2016) provide an extensive survey of this

literature.

Our second main assumption, that individuals undergo multiple tests or send multiple

messages appears to be equally well-motivated. In the signaling literature, the presence of

multiple signals to convey private information has long been recognized. For example, in

markets for new goods, a firm may use price, advertising, warranties, slotting allowances

or brand name to signal the quality of its product to its potential customers. Similarly, the

corporate finance literature has considered a variety of signals conveying the future profitability

of a firm, such as financial structure (Ross, 1977), dividend policy (Miller and Rock, 1985),

stock splits (McNichols and Dravid (1990)), share buybacks. Additionally, in evolutionary

biology, scholars have extensively studied the multi-component nature of signals animals use to

signal their quality in activities such as courtship and mating behavior or predator deterrence

(Johnstone, 1996).

As a final example, consider Spence’s celebrated education model. In this context, the

important signalling costs are those that are negatively correlated with ability - studying,

preparing assignments, and taking tests and exams. The associated costs are necessarily

incurred in several tasks, and along different dimensions. For example, a student who majors

in mathematics has to take courses in different fields, such as Analysis, Geometry, and Algebra.

Each of these fields has a different apparatus and analytical methods, so studying each of them

requires some qualitatively new cognitive effort. Therefore it is natural to think of a grade in

each of these math courses as a different signal.
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The presence of multidimensional signals has also been studied from a theoretical perspec-

tive (Cho and Sobel (1990), Ramey (1996)), where the emphasis has been on finding conditions

on the primitives and refinements of sequential equilibrium that select separating equilibria.

The literature on screening has so far studied only a few environments where agents send

multiple messages. First, multiple pieces of evidence serve as messages in the literature on

mechanism design with verifiability and hard evidence cited above. Second, legal scholars have

studied the presentation of multiple pieces of evidence and multiple rounds of questioning in

court (e.g., Emons and Fluet (2009)).

At the same time, examples in which principals screen agents by eliciting multiple mes-

sages are quite common. For example, in the hiring of new professional employees (faculty

members, engineers, consultants, accountants) a potential hire goes through multiple inter-

views with different colleagues and administrators. Each interviewer asks different questions,

and evaluates the candidate from a different angle. As another set of examples, messages

may correspond to the outcome of an inspection or an audit undertaken by the principal. For

example, shareholders or the parent corporation may carry out several accounting and other

audits of their subsidiary. The subsidiary’s managers would then have to incur the cost of

hiding or embellishing the true state of the world and fudging the numbers during each audit.

Another example concerns managers who have to defend their financial reports to a variety of

different stakeholders and outside experts, including the board of directors, external auditors,

financial analysts and credit rating agencies, shareholders, creditors and employees, who each

question the reports from a different angle.

The major insight of our paper is that the simple juxtaposition of these two common

assumptions, the type-dependence of the least cost messages and the availability of multiple

messages, has strong consequences. In the signaling context, we show that when the number

of available signals becomes sufficiently large, any sequential equilibrium that satisfies a very

mild refinement must be very informative and identify elements in very fine partitions of types.

Furthermore, in such equilibria the sender’s signalling costs become insignificantly small.

In the screening context, we show that with sufficiently many messages, the principal can

come arbitrarily close to implementing any decision rule and any surplus allocation, and at

the same time keep misrepresentation costs arbitrarily small.

These conclusions are important, because ever since Spence’s (1973) seminal contribution,

economists have been concerned with the potential loss of welfare due to signalling. Specifi-

cally, Spence demonstrates that job-applicants, engaged in a competitive ‘rat race,’ will spend

too much time and effort on education in order to provide an informative signal about their

ability, even though it may not enhance their productivity. Similarly, in the screening context,

economists have identified significant inefficiencies resulting from the agents’ incentive to earn
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information rents by manipulating their private information and the principals’ desire to limit

those information rents. Thus, our paper identifies important conditions under which such

welfare losses are relatively small.

Our analysis focuses on four issues. First, we explore the effect of increasing the dimension

of the signal space in signaling models in which the least cost message is type-dependent.

Second, we study implementation in screening models where the agent can send messages or

signals along a large number of dimensions. Third, we characterize the screening mechanism

that maximizes the principal’s expected profits when the number of signal dimensions is lim-

ited. That part of our analysis in related to the contributions by Maggi and Rodriguez-Clare

(1995) and Crocker and Morgan (1998), and we comment more on this in Section 4. We

establish an important qualitative property of the optimal mechanism - absence of exclusion.

Specifically, when costly messages are available, then each agent-type who can generate a posi-

tive surplus is assigned a non-zero allocation in the optimal mechanism. Thus we establish that

the standard result on the optimality of exclusion in optimal screening is non-robust to the

availability of costly signals.2 Finally, we present a method for choosing the optimal number

of messages when the principal also incurs a fixed cost of eliciting or processing each message.

Most of our results, with the exception of the characterization of the optimal mechanism, hold

for a multidimensional type space.

The intuition for our results is not straightforward. Increasing the number of signal di-

mensions increases the cost of signaling, and as a consequence the equilibrium signal cost

along any given dimension will necessarily fall. However, this does not imply that total signal

costs decrease as the number of signal dimensions grows. Indeed, consider Spence’s education

model, where education is unproductive, and the least cost message of each agent type is the

same (zero). In this model, total equilibrium signal cost is invariant to the number of signal

dimensions. This is because the reward to mimicking higher ability types, the associated in-

crease in the wage, remains invariant to the number of signal dimensions. So to prevent such

mimicking from being profitable, total signal costs must also remain unchanged. A similar

conclusion arises in screening models.

The novel contribution of our paper is therefore to show that when the least cost signal

differs across agent types, equilibrium message/signaling costs will fall when the dimension of

2When costly signals are absent, exclusion is a robust property of optimal screening mechanisms. In par-

ticular, a profit-maximizing monopolist will choose not to sell to consumers whose willingness to pay for the

good is not sufficiently higher than marginal cost. This holds both under both uniform and non-linear pricing,

except for the non-generic case of perfectly inelastic consumer demand at price equal to marginal cost (which

requires either that there are no consumers with valuations near marginal cost, or that the density of valuations

is infinite at this level) (see Maskin and Riley (1984)). Exclusion also occurs in settings with multidimensional

private information (see Armstrong (1996) and Rochet and Choné (1998)).
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the signal space increases. To see how this can occur, fix an allocation to be implemented and

let there initially be only a single message dimension. If some type θ does not misrepresent

itself and sends its least cost message, then some close-by type θ′ would have an incentive to

mimic type θ since her cost of doing so will be quite small. The principal would then have

to pay sufficient information rent to θ′ to prevent such imitation. As a consequence, either

costly misrepresentation by type θ or providing sufficient surplus to θ′ would be necessary to

prevent the latter from imitating the former.

Consider now what happens when the agent has to send a second message, along a different

dimension. For any pair of types (θ′, θ), since their least cost messages are different, it will

be more costly for θ′ to mimic θ, even if the latter were to send her least cost message in

this extra dimension. As a consequence, with two messages less misrepresentation by type θ

along the original dimension and/or less surplus to type θ′ will be required to prevent θ′ from

mimicking θ.

This simple intuition explains why global incentive constraints get more relaxed as the

number of signal dimensions increases, and the least cost message differs across agent. How-

ever, crucially it does not apply to local incentive constraints that involve mimicking by

infinitesimally close types. This is so because the marginal cost of misrepresentation is zero

at the least cost message, and adding more message dimensions does not change this fact. So

simply asking the agents to send their least cost messages will never satisfy local incentive

constraints, no matter how many signal dimensions there are. Importantly, the literature on

screening and signalling shows that local incentive constraints are the only binding ones in

many environments. Connected by the “chains” of local incentive constraints, “higher” types

earn informational rents that depend on the allocations given to all “lower” types, even though

global incentive constraints are non-binding.

So, in order to satisfy local incentive constraints it is necessary to introduce some degree

of misrepresentation, even with a large number of messages. Yet, we demonstrate that by

selecting this degree of misrepresentation judiciously the principal can implement her desir-

able allocation profile with overall expected misrepresentation cost that becomes small as the

number of signal dimensions increases. Essentially, the degree of necessary misrepresentation

diminishes at a faster rate than the rate at which the number of messages grows.

Our findings have practical relevance. In particular, they can explain why employers in a

number of industries prefer to screen and interview job-applicants very thoroughly, rather than

to offer self-selecting menus of contracts or strong performance incentives to them. Indeed,

the interviewing process in many professional job-markets appears to be consistent with the

idea of requesting multiple messages or signals from the candidate, with each signal being

somewhat different from the others. For example, in the context of a departmental visit
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on the academic job-market a prospective candidate meets with faculty members working

in different fields. It is plausible that each conversation provides an independent signal of

the candidate’s ability, because different faculty members, especially if they work in different

fields, assess the candidate from different perspectives and inquire about different aspects of

the candidate’s knowledge and skills. Similar interviewing procedures are used by professional

services firms in consulting, law, banking, etc. The interview in such firms involve solving

cases, conversations with consultants, managers and partners. Our results imply that if a

job candidate had to go through a sufficient number of such interviews, or other tests, then

substantially misrepresenting his ability would be too costly. So, the employer will have a quite

accurate estimate of the candidate’s ability, and would not have to offer a powerful incentive

scheme on the job. This is notable since the incentive schemes used in the real world are often

not as strong as predicted by the contracting literature.

Our findings also shed some light on the empirical literature on signalling. Ever since

Spence’s (1973) groundbreaking contributions, researchers have been trying to document the

existence and magnitude of signalling cost, but were having trouble doing so. For example, in

the educational context, the survey by Page (2010) concludes that “the number of studies that

use convincing empirical strategies to test the signaling model (in education) is short, and the

evidence is mixed.” Several more recent studies, including Chevalier et. al (2004), Clark and

Martorell (2014), and Arteaga (2017) indicate that this cost may be quite small. Given the

large number of courses taken by modern-day students before graduating from college, our

model provides a potential explanation for these findings.

2 Model

We begin with a signaling version of our model. There are two actors in the model, a sender

and a receiver. The sender first privately observes the outcome of a random variable θ (which

we will refer to as the sender’s type) affecting her utility. We assume that θ ∈ Θ, where Θ is a

compact subset of Rl. Thus, we explicitly allow for multidimensional private information. We

assume that θ is distributed according to a commonly known probability distribution function

F (.) which possesses a continuous and strictly positive density f(.).

After observing her type θ, the sender sends a vector of n different signals mn = (m1, ...,mn)

to the uninformed receiver. As emphasized in the introduction, each signal is characterized

by some specific content, or is sent along a different dimension. We assume that the i-th

message mi belongs to a compact subset Mi ⊆ Rl. Note that we require Mi and Θ to be of

the same dimension, so that each message can contain information about all of the aspects or
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dimensions of the sender’s type.3

After observing the message vector mn, the receiver forms posterior beliefs µ(m) and

responds by selecting an action x ∈ X, which affects the utility of both actors. We assume

that X is a compact subset of a k-dimensional Euclidean space. The sender’s utility function

is given by

un(x,mn, θ)

We assume that for each (θ, x) ∈ (Θ, X) there is a message profile γn(θ) that uniquely maxi-

mizes un(x,mn, θ) i.e.,

un(x, γn(θ), θ) ≥ un(x,mn, θ),

with strict inequality whenever mn 6= γn(θ). Since sending any message profile other than

γn(θ) generates strictly less utility for type θ, we will henceforth refer to γn(θ) as type θ’s

costless message profile. The costless message profile γn(θ) can be regarded as “truthful” for

the agent of type θ, because this is the message profile that the sender would prefer to send

if she did not care about affecting the receiver’s beliefs and action. In contrast, sending any

message mi 6= γi(θ) involves costly and socially inefficient type misrepresentation.

Furthermore, we assume that the utility functions un and un+1 for environments with n

and n+ 1 messages, respectively, are linked as follows:

un+1(x,m1, ...,mn,mn+1, θ) ≤ un(x,m1, ...,mn, θ), for all (m1, ...,mn), mn+1 and θ

un+1(x,m1, ...,mn, γn+1(θ), θ) = un(m1, ...,mn, θ), for all (m1, ...,mn) and θ.

Thus sending more messages is costly for the sender, but the extra cost can always be avoided

by sending the truthful message profile γn(θ). We denote by u(x, θ) the sender’ utility when

she sends the costless message profile γn(θ). Thus:

u(x, θ) = u0(x, θ) = un(x, γn(θ), θ) for all n.

We assume the costless messages vary with type i.e., there exists a strictly positive constant

L such that

||γi(θ)− γi(θ′)|| ≥ L ||θ − θ′||, for all i.

Also, there exists α > 0 such that

un(x, γn(θ), θ)− un(x,mn, θ) > α ||mn − γn(θ)||2.

The latter assumption says that message profiles further away from the message profile γn(θ)

are more costly for the sender, and puts a lower bound on these costs.

3This involves little loss of generality, as we allow the sender-agent to send multiple messages. For example,

if each message could only reflect one dimension of her type, we could always bundle them in groups of l

messages.
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The receiver’s utility function is denoted by v(x, θ), which we assume to be strictly concave

in θ. So for all posterior beliefs µ ∈ P(Θ), the receiver’s best response BR(µ) ∈ X is unique,

where

BR(µ) = arg max
x∈X

∫
v(x, θ)dµ(θ).

We use the notation x∗(θ) to denote the receiver’s best response to point beliefs δ(θ) at θ i.e.,

x∗(θ) = arg max
x

v(x, θ)

Finally, as standard in many signalling models, we assume that there exists the “best”

type θ+ ∈ Θ such that all sender types wish to be perceived as θ+. Formally, we have:

un(x∗(θ+),mn, θ) ≥ un(BR(µ),mn, θ), for all µ,mn, θ and n,

with strict inequality whenever µ 6= δ(θ+).

We focus on pure strategy sequential equilibria of our signalling model. Such an equilibrium

is a triple (m̃n(θ), µ(mn), x̃n(µ)) where m̃n(θ) denotes the equilibrium message strategy of type

θ, µ(mn) denotes the beliefs of the receiver after she receives message mn, and x̃n(µ) denote

the (unique) best response action of the receiver to the beliefs µ, where the beliefs satisfy

the standard consistency condition with the sender’s equilibrium message strategy, and the

sender’s message strategy maximizes her expected payoff given the receiver’s beliefs.4 Let

Un(θ) denote the equilibrium expected utility of type θ. Then we have:

Un(θ) = un(x̃n(µ(m̃n(θ)), m̃n(θ), θ).

With a slight abuse of notation, where is does not cause an ambiguity, we will let x̃n(θ) denote

the sender’s best response to type θ’s equilibrium message profile m̃n(θ).

We confine attention to sequential equilibria that survive a very weak refinement termed

the dominance criterion (Cho and Kreps, 1987, p. 199). Specifically, fixing some sequential

equilibrium of our signalling game let m be an out-of-equilibrium message profile, and suppose

that for type θ sending some message profile m′ dominates sending message profile m in the

following sense:

min
µ
un(BR(µ),m′, θ) > max

µ
un(BR(µ),m, θ). (1)

Let J(m) denote the set of all such types θ. That is, for every θ ∈ J(m) there is a message

profile m′ (that may be different across types in J(m)) that dominates message m. Then the

dominance criterion requires that whenever J(m) is a strict subset of Θ, our equilibrium must

survive when the beliefs following the out-of-equilibrium message profile m are supported on

the set Θ\J(m). Observe that if J(m) = Θ, then any belief µ(m) will support our sequential

equilibrium. In this case, we may choose µ(m) = δ(θ+).

4Our restriction to pure strategy sequential equilibria is imposed mainly for brevity. Allowing for mixed

strategy equilibria is straightforward, but requires somewhat more cumbersome notation.
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3 Signaling with Multiple Messages

It is tempting to argue that our setup trivially implies our results: when the number of

messages is large enough, misrepresentation can be easily prevented as the message costs

associated with a misrepresentation will be sufficiently large and exceed the benefit thereof.

There are two reasons why this logic is fallacious.

First, this reasoning does not imply that under these circumstances the equilibrium sig-

naling cost is small. Indeed, it may very well be that the message costs necessary to prevent

misrepresentation are invariant to the dimension of the signal space. This possibility is most

easily recognized in Spence’s education model, where regardless of the shape of the cost func-

tion describing how costly it is to acquire each level of education, the equilibrium signal cost

difference must always be the same in order to induce workers to separate. This is illustrated

in the following example:

Example 1 Suppose a worker of productivity θ sends a vector of n signals (m1, ...,mn), per-

haps reflecting different grades obtained in a variety of different courses, and then receives a

wage w determined in a competitive market. The worker’s utility is given by u(w,m1, ...,mn, θ) =

w −
∑n

i=1 c(mi, θ), where c(mi, θ) = mi/θ. Then since
∑n

i=1 c(mi, θ) = c(
∑n

i=1mi, θ), any

symmetric separating equilibrium with n different signals is also a separating equilibrium for

the model with a single signal m =
∑n

i=1mi, with cost function c(m, θ). The equilibrium signal

is then given by m(θ) =
∑n

i=1m
n
i (θ).

To relate this example to our previous discussion, note that the environment considered

in the example is equivalent to an alternative one in which the agent sends a single message,

but where the cost function is equals nmθ . Increasing n, and thereby raising the associated

message cost, will induce the agent to send a less costly message, but will result in the same

total message cost. What is key in this example is not so much the linearity of the signal cost

function, but rather that the costless message is the same across agent types, i.e. γi(θ) = 0

for all θ.

The basic insight of our paper is that increasing the dimension of the signal space would

have an effect if the least cost signal γi(θ) varied non-trivially with the agent’s type. Indeed,

suppose that we fixed the signal cost for all agent types as additional signals are introduced.

This would imply that the equilibrium signal profile for any agent type θ gets closer to her

truthful or least cost message profile. As our results will ultimately show, the signal profile

can be chosen in such a way that, as the number of signals increases, not only will type θ’s

equilibrium signalling cost decrease, but also the cost of imitating θ will increase for any θ′.
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Achieving these two goals simultaneously is non-trivial. As is common, we assume that

the marginal cost of misrepresentation is zero at any agent type’s costless message.5 As a

consequence, equilibrium requires some misrepresentation. Nevertheless, a judicious choice of

message profile ensures that signal costs vanish as the dimension of the signal space increases.

3.1 A Motivating Example

In this section we provide an example highlighting our approach with multiple signals to

reexamine the extant results on signalling via education in the job-market, and in particular the

seminal contribution of Spence (1973). Consider a worker with privately-known productivity

type θ ∈ [0, 1] whose cost of producing q units of output equals h(q, θ) = q2

2 . The worker’s

productivity is distributed according to probability distribution F (.). The employer’s benefit

from q units of output produced by the worker of type θ is equal to v(q, θ) = θq. The employer

pays the transfer t to the worker. Thus the worker’s utility function is given by

t− q2

2
,

and the employer’s net benefit is given by

θq − t

As in Spence (1973), we assume that the employment market is competitive, so that

the worker gets the full expected surplus Eµ(maxq v(q, θ) − h(q, θ)), where µ describes the

employer’s beliefs about the worker’s type θ. The worker obtains education before entering

the job-market. The observable characteristic of education in our model is a profile of grades

(m1, ...,mn) attained by a worker in the courses she took, with mi standing for the grade

in course i. Education is not productive, but carries a type-dependent communication cost,

given by

Cn(m1, ...,mn, θ) =
1

2

n∑
i=1

(mi − θ)2

Our goal is to characterize a perfect Bayesian equilibrium of this signalling model that sat-

isfies the dominance criterion refinement defined above. For simplicity in exposition, we will

focus on separating equilibria. For fixed n, such an equilibrium consists of the equilibrium

grade strategy (m̃1(θ), ..., m̃n(θ)), employer’s beliefs µ(m) mapping grade profiles into proba-

bility distributions over types, and a job offer (q̃(µ), t̃(µ)) which the worker receives from the

employer with beliefs µ.

5This assumption follows naturally from differentiability of the cost function un, and the fact that un is

maximized at mi = γi(θ).
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In a separating equilibrium, the beliefs on the equilibrium path are degenerate, i.e. µ(m̃n(θ)) =

θ. We will discuss the off-the-path beliefs supporting this equilibrium below. The competitive

markets assumption implies that the quantity allocation in a separating equilibrium must be

first-best i.e.,

q̃(θ) = arg max
q

[v(q, θ)− h(q, θ)] = θ

and that the worker receive all the surplus from the relation, i.e.

t(θ) = v(q̃(θ), θ) = θ2.

Also, because of the symmetry in the grade cost function, all equilibrium signals will be the

same, i.e. m̃i(θ) = m̃(θ) for all i = 1, ..., n.

Finally, the following incentive constraints hold for every pair of types (θ, θ′):

Un(θ) ≡ v(q̃(θ), θ)−h(q̃(θ), θ))−
∑

i=1,...,n

c(m̃i(θ), θ) ≥ v(q̃(θ′), θ′)−h(q̃(θ′), θ)−
∑

i=1,...,n

c(m̃i(θ
′), θ) ,

yielding

Un(θ) ≡ θ2

2
− n

2
(m̃(θ)− θ)2 ≥ θ′2

2
− n

2
(m̃(θ′)− θ)2 (2)

Thus the right side of (2) is maximized at θ′ = θ, producing the first order conditions:

θ − n(m̃(θ)− θ)dm̃
dθ

= 0

This equation admits a solution

m̃(θ)− θ = αθ, (3)

where6

α =
1

2

(
−1 +

√
1 +

4

n

)
. (4)

It is apparent from (4) that the distortion in each of the worker’s equilibrium signals converges

to zero as n grows arbitrarily large. Of particular interest are the worker’s equilibrium signal

cost: ∑
i=1,...,n

c(m̃i(θ), θ) =
n

2
(m̃(θ)− θ)2 =

n

2
α2θ2 =

θ2

8

[√
n+ 4−

√
n
]2 ≈ θ2

2n

Thus equilibrium message costs vanish as the number of signals grows large.

It remains to show that this equilibrium can be supported with off equilibrium beliefs

satisfying the dominance criterion. Since the range of equilibrium messages is [0, 1 + α], we

6There is another solution to (3), with α = 1
2

(
−1 +

√
1 + 4

n

)
. However, this solution violates the second-

order conditions for worker utility maximization.
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need only be concerned about messages m > 1+α. For any such m, the best possible employer

inference for a worker is µ(m) = 1. So by sending an off equilibrium message m, a worker of

type θ can get no more than
1

2
− n

2
(m− θ)2

For any other message m′, the worst possible employer inference the worker could face is that

µ(m′) = 0, in which case he receives a zero transfer and incurs the signal cost n(m′ − θ)2.

Thus if any signal m′ dominates m for type θ, then m′ = θ also dominates m. Hence m is

dominated for type θ whenever

1− n(m− θ)2 ≤ 0,

or equivalently whenever

θ 6∈

[
m−

√
1

n
,m+

√
1

n

]

Since m ≥ 1+α, and so m+
√

1
n > 1 , it follows that we must have supp(µ(m)) ⊆ [m−

√
1
n , 1],

for m ≤ 1 +
√

1
n , and supp(µ(m)) = {1} for m > 1 +

√
1
n . For example, we may take µ(m) to

be the point mass at θ = 1 for all m ≥ 1 + α. It is immediate that these beliefs support our

equilibrium.7

3.2 Main Results for the Signalling Model

In our more general proof, we do not require that the equilibrium be separating. Indeed, our

refinement is too weak to select the signaling equilibrium when n is small. We also allow for

arbitrary dimension of the type space, for which few results are known in the extant literature.8

7To be complete, we should also specify beliefs for message profiles that are not on the diagonal, i.e. for

which mi 6= mj for some i 6= j. Such message profiles m are not dominated for type θ if and only if there exists

no message profile m′ for which

1−
n∑
i=1

(mi − θ)2 ≥ 0−
n∑
i=1

(m′i − θ)2

Since the right side of this inequality is maximized at m′i = θ for all i, the dominance criterion requires that

beliefs following the message profile m be concentrated on the complement of the set J = {θ : θ ∈ B(m, 1)},
whenever it is nonempty. The receiver’s beliefs µ(m) may therefore be specified as a pointmass at

θ = m− 1

n

√
n+

(∑
mi

)2
− n

∑
m2
i

whenever J 6= φ, and a point mass at θ = 1, otherwise. It is tedious, though straightforward to check that

these beliefs support the equilibrium path.
8One notable exception is Lee, Mueller and Vermeulen (2011), who establish existence of a signalling equi-

librium in a model with multidimensional types. However, they make use of a strong homogeneity assumption,

which effectively reduces the problem to one with single-dimensional type space.
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Additionally, our signal space is multidimensional, and we allow the agent to either experience

economies or diseconomies in signal cost as the number of available signals increases. Finally,

we do not impose any single crossing conditions on the sender’s utility function.

Remarkably, we are able to establish that sequential equilibria that satisfy our weak re-

finement criterion must become arbitrarily close to perfectly revealing as the dimension of the

signal space grows without bound, at a signal cost which then becomes arbitrarily small. The

intuition for our general result is that for large n, for any type θ′ 6= θ sending the message pro-

file γn(θ) becomes arbitrarily costly relative to sending γn(θ′). The dominance criterion then

guarantees that following the signal profile γn(θ), the receiver’s beliefs must be concentrated

on sender types close to type θ. Thus when n is large, by sending γn(θ) type θ can essentially

guarantee herself the perfectly revealing payoff, without incurring any message cost.

We now state the main theorem of this section:

Theorem 1 Consider a sequence of sequential equilibria satisfying the dominance criterion.

Then as the number of signals n grows without bounds, equilibrium beliefs following the equi-

librium message profile of any type θ converge weakly to point beliefs at θ. So the equilibrium

becomes perfectly revealing i.e., x̃n(θ) → x∗(θ) for all θ. Furthermore, the associated equi-

librium utility Un(θ) = un(x̃n(θ), m̃n(θ), θ) of sender type θ converges to u(x∗(θ), θ), for all

θ.

According to Theorem 1, the cost of signalling becomes small as the number of signals n

increases. In the job-market signalling application of our model, this implies that each worker-

type sends only “almost” costless messages, i.e. gets her “natural” grades” in equilibrium.

But the cost to type θ′ of imitating type θ becomes large as n grows.

4 Screening with Multiple Messages

In this Section, we recast the model of the previous section in a screening context. Specifically,

we consider a principal-agent problem in which the principal controls an allocation x ∈ X ⊂
Rk which contains a vector of production and/or consumption decisions, as well as monetary

transfers. The agent privately observes her type θ ∈ Θ ⊂ Rl. When the agent’s type is θ, she

obtains utility u(x, θ) and the principal obtains utility w(x) from allocation x.

To this standard screening environment we add a costly communication process in which

the agent sends several messages or signals to the principal.9 When sending a vector of

9We use the term ‘signal’ both in the mechanism design and in the signalling settings. The term ‘signal’ is

appropriate in the mechanism design and screening settings here because it refers to certain agent’s actions or

messages which possess only informational value that has to be inferred by the principal.
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messages or signals mn = (m1, ...,mn) ∈ Mn =
∏n
i=1Mi an agent of type θ incurs the cost

Cn(mn, θ). The agent’s overall payoff is thus given by:

u(x, θ)− Cn(m1, ...,mn, θ) (5)

The cost function Cn is such that for each i message mi is costless for type θ if and only if mi =

γi(θ). Thus we have γi(θ) = arg minmi C
n(m1, ...,mi, ...,mn, θ) for all (m1, ..,mi−1,mi+1, ...,mn),

and Cn(m1, ...,mn, θ) = 0 if and only if mi = γi(θ) for all i = 1, ..., n.

The agent’s cost of misrepresenting her type, i.e. sending message mi 6= γi(θ), generally

depends on the other communicated messages. Such dependencies arise naturally. For exam-

ple, as the agent proceeds with sending more messages to the principal, she may learn how to

misrepresent her information more effectively and at a lower cost. Alternatively, additional

effort spent on one test could be fatiguing the agent, and therefore raise the cost of undergoing

a subsequent test.

Apart from the costly messages mn, we also allow the agent to send a cheap talk message

τ . By the Revelation Principle, we can without loss of generality take the latter to be a type

announcement, so that τ ∈ Θ and the agent’s message space is equal to Θ×
∏n
i=1Mi ≡ Θ×Mn.

In the sequel, we rely on mechanisms that do not use cheap talk messages. However, it is

important to show that our results are robust to the addition of such messages and that the

latter do not affect the scope of implementation.

A mechanism that the principal offers to the agent can be represented by a mapping g(.)

from the agent’s message space Θ×Mn into the space of allocations X. We will say that an

allocation profile x(·) is implementable if there is a mechanism g(·) : Θ×Mn 7→ X, an agent’s

message/signal rule (strategy) µn : Θ→Mn and agent’s cheap-talk rule (strategy) τ : Θ 7→ Θ

such that for all θ ∈ Θ we have x(θ) = g(τ(θ), µn(θ)) and:

u(x(θ), θ)− Cn(µn(θ), θ) ≥ max
θ′∈Θ,mn∈Mn

u(g(θ′,mn), θ)− Cn(mn, θ) (6)

When the incentive constraints (6) hold, it is optimal for the agent of type θ ∈ Θ to send an

array of messages (τ(θ), µn(θ)) in the mechanism g(.), resulting in the allocation x(θ). In the

next section we study how the set of implementable allocations varies with the dimension of

the signal space n.

Since the primary focus of this section is on implementability, we do not generally impose

individual rationality. However, we point out below how certain results of this section can be

interpreted as full surplus extraction by the principal leaving the agent at her outside option

level.
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4.1 An Example

A principal contracts with an agent to supply output q ∈ R+, for which he compensates the

agent with a transfer t ∈ R+. Output q generates a profit or surplus S(q) = q − q2

2 for the

principal. After the payment t to the agent, the principal obtains the net payoff:

S(q)− t = q − q2

2
− t.

The agent’s constant marginal cost of production θ is randomly drawn according to the dis-

tribution function F (θ) with support Θ = [0, 1], and is the agent’s private information. The

agent can submit a set of claims (m1, ...,mn) ∈ Θn to the principal regarding her marginal

cost of production. The agent can manipulate and submit false claims, but in doing so incurs

a cost that is increasing in the distance between the message and the true marginal cost.

Specifically, the agent’s cost of submitting a vector of claims (m1, ...,mn) is given by

Cn(m1, ...,mn, θ) =
1

2

n∑
i=1

(mi − θ)2

Thus after sending a vector of claims (m1, ...,mn), producing output q and getting a payment

t from the principal, the agent obtains net utility equal to:

t− θq − Cn(m1, ...,mn, θ) = t− θq − 1

2

n∑
i=1

(mi − θ)2 (7)

The production contract which the principal offers to the agent specifies a quantity/transfer

pair (q, t) as a function of the vector of claims (m1, ...,mn) submitted by the agent. So, after

signing the contract, the agent sends a vector of n claims regarding her marginal cost to the

principal and the quantity/transfer pair (q(m1, ...,mn), t(m1, ...,mn)) is then implemented.

The agent’s reservation utility is zero, so her net payoff (7) should be at least zero.

Consider the principal’s first-best allocation which she would implement if she knew the

agent’s marginal cost. The output in this allocation maximizes the social surplus

q − q2

2
− θq

and hence is given by qFB(θ) = 1 − θ. The principal would extract all the surplus from the

relation by ordering the quantity qFB(θ) and paying to the agent a transfer equal to:

tFB(θ) = θ.

When the agent does not incur a misrepresentation costs, i.e. Cn(m1, ...,mn, θ) ≡ 0, the out-

come (qFB(·), tFB(·)) is not implementable, as the agent would overstate her true marginal
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cost. In the presence of misrepresentation costs, (qFB(·), tFB(·)) is not costlessly imple-

mentable. This is because the agent’s marginal cost of misrepresentation is equal to zero

at a truthful claim i.e., ∂Cn(m1,...,mn,θ)
∂mi

|mi=θ = (mi − θ)|mi=θ = 0, so the agent then still has

an incentive to overstate her true marginal cost.

It follows that the optimal mechanism will involve some misrepresentation on the part of

the agent. This is costly for the principal, for he then has to compensate the agent for her

costs of misrepresentation to induce the desired allocation. As a consequence, the principal

will have to raise the transfer above tFB(θ).

Below, we illustrate how the principal can choose the level of misrepresentation mn(·) to

implement the outcome (qFB(·), tn(·),mn(·)) such that, when the number of claims n becomes

large, the misrepresentation cost Cn(mn(θ), θ) becomes arbitrarily small and at the same time

the transfer tn(θ) exceeds tFB(θ) by an arbitrarily small amount for all θ ∈ [0, 1].

Let us select the transfer tn(·) and the claim profile mn(·) so that each agent-type’s net

utility is equal to zero, her reservation value. This condition and incentive compatibility can

be combined as follows:

0 = U(θ) = tn(θ)−θqFB(θ)−1

2

n∑
i=1

(mi(θ)−θ)2 = max
θ′

{
tn(θ′)− θqFB(θ′)− 1

2

n∑
i=1

(mi(θ
′)− θ)2

}
(8)

Applying the Envelope Theorem to (8) yields:

0 = U ′(θ) = −qFB(θ) +

n∑
i=1

(mi(θ)− θ) (9)

Let us choose the same level of misrepresentation in every claim i.e., mi(θ) − θ = z for all i.

Using this and qFB(θ) = 1− θ in (9) yields:

mi(θ) = θ +
1− θ
n

Thus as n becomes large, the equilibrium claims converge to the truth θ, uniformly in θ.

Furthermore, the associated communication costs equal

Cn(m1(θ), ...,mn(θ), θ) =
1

2

n∑
i=1

(mi(θ)− θ)2 =
n

2
(mi(θ)− θ)2 =

(1− θ)2

2n
,

which converges to zero as n becomes large.

Under our chosen claims profile, the transfer function tn(θ) satisfying Un(θ) = 0 is:

tn(θ) = θqFB(θ) +
1

2

n∑
i=1

(mi(θ)− θ)2 = (1− θ)
(
θ +

1− θ
2n

)
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To see that this contract satisfies the incentive constraints built in (8), note that under this

transfer function the maximand in the max operator in (8) is given by

(1− θ′)
(
θ′ +

1− θ′

2n

)
− θ(1− θ′)− n

2

(
θ′ +

1− θ′

n
− θ
)2

This maximand is concave in θ′ in this simple example. So (qFB(·), tn(·),mn(·)) is imple-

mentable if the derivative of the maximand is equal to zero at θ′ = θ. It is easy to check that

this condition is indeed satisfied. In our more general proof, such concavity is not guaranteed.

Instead, we construct a message profile mn(.) so that it has a small cost for each agent-type,

We show that large deviations in the message strategy are not profitable for any agent-type, as

they are simply too costly. To rule out small deviations from mn(.), we show that the payoff

of agent-type θ as a function of her message profile mn(θ′), has a strictly positive directional

derivative in the direction of (θ − θ′).
Our general result considers multidimensional types, permits general quasilinear payoff

functions for the agent and the principal, and allows the agent to have either an economy

or diseconomy in communication cost as the number of signals increases. In other words, it

allows for lying to become either easier or harder as the number of different claims, signals,

messages, or pieces of evidence increases.

4.2 Main Result for the Screening Model

To exhibit our key result in the simplest way, we maintain transferable utility model in this

section. Specifically, we partition the outcome x = (q, t) into a production assignment q ∈ Q,

where Q is a compact subset of Rk−1
+ , and a transfer t ∈ R from the agent to the principal.

The agent’s utility function is quasilinear and is given by

u(x, θ) = t− h(q, θ).

We assume that h(q, θ) and Cn(mn, θ) are twice continuously differentiable functions, and that

γn(θ) is a twice continuously differentiable vector function. The function h(q, θ) is naturally

interpreted as the agent’s cost of production, or, alternatively, as her utility from consumption.

Since the focus of this subsection is on implementability, the principal’s utility function,

defined as w(x) at the beginning of this section, plays no role here.

For any function g(ρ, η) : Rj ×Rk → R, where j, k > 1, we let D2
ρρg(ρ, η) denote the j × j

matrix of second derivatives of g w.r.t. the vector ρ. Similarly, D2
ρηg(ρ, η) is j × k matrix of

cross partial derivatives ∂2g
∂ρi∂ηl

. Also, for any function d(η) : Rk → Rk, Dηd(η) denotes a k× k
matrix of first derivatives of d(η). We may now state the following Assumption:
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Assumption 1 There exist constants α ∈ [0, 1
2), ω1, ω2, ω3, ω4 > 0, and L <∞ such that:

(i) For every ε > 0, there exists δ > 0 such that ||
∑n

i=1D
2
θmi

Cn(mn, θ)−
∑n

i=1D
2
θmi

Cn(γn(θ), θ)||
< n1−αε whenever ||mn − γn(θ)|| < δ;

(ii) ||
∑n

i=1D
2
θmi

Cn(γn(θ), θ)z|| ≥ ω1n
1−α||z|| ;

(iii) For every ε > 0, there exists δ > 0 such that ||DθθC
n(mn, θ′)−DθθC

n(γn(θ), θ)|| < εn1−α

whenever ||(mn, θ′)− (γn(θ), θ)|| < δ;

(iv) x′DθθC
n(γn(θ), θ)x ≥ ω2n

1−α ||x||2;

(v) ω3
nα ||m

n − γn(θ)||2 ≤ Cn(mn, θ) ≤ ω4
nα ||m

n − γn(θ)||2;

(vi) ||γi(θ)− γi(θ′)|| ≥ L ||θ − θ′||, for all i.

The requirements embedded in Assumption 1 are rather mild, and mostly technical in

nature. They are easily satisfied in most common specifications of the cost function. For

example, the cost function

Cn(mn, θ) =
1

2

n∑
i=1

(mi − θ)2

satisfies all the requirements.

The only premise of economic significance is Assumption 1(vi), which requires the costless

message profile γn(θ) to vary non-trivially with θ. Assumption 1(v) is rather innocuous, as it

only requires Cn(·, θ) to be majorized and minorized by quadratic functions centered around

γn(θ).

Assumption 1(ii) requires Dθmi to vary non-trivially with θ at mn = γn(θ), thereby slightly

strengthening Assumptions 1(v) and 1(vi).10 Assumptions 1(i) and (iii) impose mild continuity

requirements on D2
θmi
Cn(mn, θ) and D2

θθin mnCn(mn, θ) in the neighborhood of truthtelling,

and control the asymptotic behaviors of these terms. Assumption 1(iv) requires Cn(mn, θ)

to be α-convex in θ, with a parameter ω2n
1−α that grows along with n. Local convexity of

Cn(mn, θ) in θ at mn = γn(θ) is already implied by our basic assumptions on Cn, provided that

γn depends non-trivially on θ.11 At some cost in complexity of the proof, global convexity in θ

can be dispensed with, since large deviations are easily deterred when the number of required

10To see this, note that since Cn(mn, θ) is globally minimized at mn = γn(θ), we have DmiC
n(γn(θ), θ) = 0.

Totally differentiating this identity w.r.t. θ yields D2
miθ

Cn(γn(θ), θ) = D2
mimiC

n(γn(θ), θ)Dθγ
n(θ). Assump-

tion 1(5) implies that D2
mimiC

n(γn(θ), θ) is a positive definite matrix. A mild strengthening of 1(vi) would

have Dθγ
n(θ) be nonsingular. This implies that ||D2

θmi
Cn(γn(θ), θ)z|| > 0.

11To see this, note that since Cn(mn, θ) is globally minimized at mn = γn(θ), the identities DmC
n(γn(θ), θ) =

0 and Dθ(γ
n(θ), θ) = 0 hold. Totally differentiating w.r.t. θ the following expressions hold at (γn(θ), θ):

D2
mmC

nDθγ
n + D2

mθ = 0 and D2
θmC

nDθγ
n + D2

θθC
n = 0. Thus D2

θθC
n = − D2

θmC
nDθγ

n =

(Dθγ
n)′D2

mmC
nDθγ

n. Since mn = γn(θ) minimizes Cn(mn, θ), D2
mmC

n is a positive semidefinite matrix,

implying that D2
θθC

n is positive semidefinite. Slightly strengthening this to positive definitiveness of D2
mmC

n

then implies that D2
θθC

n is positive definite because by Assumption 1(vi) we have Dθγ
n 6= 0.
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messages is large. Hence the essential assumption embodied in 1(iii) is that the degree of

convexity of Cn in θ becomes increases with the number of messages. This condition in turn

follows naturally from a lower bound on the degree of convexity of Cn in each element of the

message profile, and a lower bound on the rate at which costless messages vary with type.12

We may now state:

Theorem 2 Suppose Assumption 1 holds. Then for every pair of twice continuously differen-

tiable functions (q, t) and every ε > 0, there exist N < ∞ such that whenever the dimension

of the message space n exceeds N , we can implement a pair (q, tn) where the transfer function

tn satisfies |tn(θ) − t(θ)| < ε. Furthermore, the associated communication cost Cn(mn(θ), θ)

is less than ε for every agent-type θ.

Note that we have not imposed agent individual rationality on our implementation prob-

lem. However, an immediate implication of Theorem 2 is that the principal can extract the

surplus from the agent, leaving the latter at her outside option value, and implement the

first-best quantity allocation qFB(.) with negligible communication costs.

The proof of Theorem 2 is rather subtle. An important part of the mechanism design in

Theorem 2 is the construction of an incentive compatible message profile mn(θ), mn 6= γn(θ),

which converges to the profile of costless messages γn(θ) as n increases.

The transfer rule tn is chosen to provide the agent the same net utility as in the allocation

(q, t) that we wish to implement. Particularly, the first-order condition for local incentive

compatibility is:

Dθt
n(θ) = Dqh(q(θ), θ)Dθq(θ) +DmnCn(mn(θ), θ)Dθm

n(θ) (10)

If the agent was to send only costless messages, then the second term in (10) would be zero, as

DmiC
n(γn(θ), θ) = 0. Thus in the absence of costly messages the first-order condition imposes

a restriction on the set of implementable allocations in the form of a link between q(θ) and

tn(θ). Costly signals weaken and eventually eliminate the need for such link, and allows us to

implement a larger set of allocation profiles.

When the number of messages n is small, the degree to which the link between q(θ) and

tn(θ) is weakened is limited by the magnitude of the required misrepresentation mn(θ), and

12To see this, note that since mi = γi(θ) minimizes Cn(m−i,mi, θ), we have DmiC
n(m−i, γi(θ), θ) = 0.

It follows that D2
mimj

Cn(γn(θ), θ) = 0 for all i 6= j. From the previous footnote we then know that

D2
θθ(γ

n(θ), θ) = (Dθγ(θ)′D2
mmC

n(γn(θ), θ)Dθγ(θ) =
∑n
i=1 (Dθγi(θ))

′D2
mimi

Cn(γn(θ), θ)Dθγi(θ). Suppose

now that for each n and each i, D2
mimi

Cn(γn(θ), θ) is a positive definite matrix, with eigenvalues bounded

below by λ > 0. Suppose also that for each i, (Dθγi(θ))
′Dθγi(θ) is a positive definite matrix, with eigenvalues

bounded below by σ > 0. Then we have θ′D2
θθ(γ

n(θ), θ)θ =
∑n
i=1 θ

′ (Dθγi(θ))
′D2

mimi
Cn(γn(θ), θ)Dθγi(θ)θ ≥

λ
∑n
i=1 θ

′ (Dθγi(θ))
′Dθγi(θ)θ ≥ λσn ||θ||2, so the function Cn(mn, θ) is α-convex in θ, with parameter α = λσn.
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the associated communication costs, which may have to be fairly large. In contrast, with

sufficiently large n, the codependency between q(θ) and tn(θ) is eliminated at a very small

cost.

Assumption 1 (iii) is used to show that when the number of messages is sufficiently large,

truthtelling is a strict local maximum. It also guarantees that large deviations from truthtelling

are not profitable. Assumption (iv) is then invoked to establish that the aggregate message

costs vanish as the number of messages increases.

Finally, consider the second-order conditions for implementation. Maggi and Rodriguez-

Clare (1995), who characterize the optimal mechanism for n = 1, imposed the restriction

q′(θ) ≥ 0 and m′(θ) ≥ 0 to guarantee that their second-order conditions hold. In contrast,

a careful inspection of our proof reveals that, with many n, the second-order conditions hold

because the agent sends a large number of messages which are close to her costless message

γ(θ).

4.3 Optimal Mechanisms

Theorem 2 provides conditions under which almost all decision rules become implementable

and the communication cost converges to zero as the number of messages becomes large.

However, it is also interesting to consider what happens when the number of available messages

remains limited, either exogenously or endogenously.

In this section, we characterize the optimal mechanism for a one-dimensional type space,

i.e. l = 1, and every possible number of messages n. The agent’s type θ is assumed to be

randomly drawn from an interval [θ, θ] according to cdf F (.) with continuous density f(.). We

maintain the assumption that an allocation x consists of a monetary part t and non-monetary

part q. For simplicity, we assume that q ∈ R+.

The principal’s and the agent’s payoff functions are assumed to be quasilinear and are

given by v(q)− t and t−h(q, θ), respectively. We impose individual rationality, and normalize

the agent’s reservation utility to 0.

We make standard assumptions that v(.) and h(.) are twice continuously differentiable,

hθ ≥ 0, hqθ > 0, hθθ ≥ 0 and vqq − hqq < 0 for all q and θ ∈ [θ, θ], and that v(0) = h(0, θ) = 0

for all θ. In addition, we assume that vq(0)−hq(0, θ) = 0, vq(0)−hq(0, θ) > 0 for all θ ∈ [θ, θ),

and that there exists q̄ ∈ (0,∞) s.t. vq(q) − hq(q, θ) < 0 for all q > q̄ and all θ. These

assumptions guarantee that the solution qFB(θ) to the following problem:

max
q≥0
{v(q)− h(q, θ)}

exists, satisfies qFB(θ) > 0 for all θ ∈ [θ, θ), qFB(θ) = 0, and is decreasing in θ.

Finally, we make the following technical assumptions:
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Assumption 2 (i) v(q)− h(q, θ) + F (θ)
f(θ) h(q, θ) is has strictly decreasing differences in (q, θ);

(ii) Cn(mn, θ)+ F (θ)
f(θ)Cθ(m

n, θ) is submodular in mn, and has strictly decreasing differences

in (mn, θ);

(iii) Cn(mn, θ) is convex in θ, submodular in mn, and has strictly decreasing differences

in (mn, θ).

Parts (i) and (ii) of Assumption 2 require the cross-partial derivatives of the agent’s virtual

utility and virtual communication cost to be negative. It is well-known that Assumption 2 (i)

holds if, in addition to the above assumptions on v and h, the cdf F (.) possesses the monotone

hazard rate property. Part (iii) requires the cost function to be convex in mn and in θ, and

imposes a single crossing condition.

We now proceed to derive the optimal mechanism. Specifically, the principal selects a

“quantity” q(·) and transfer function t(.), and a vector of messages mn(·) to solve:

max
q(θ),t(θ),mn(θ)

∫ θ

θ
(v(q(θ))− t(θ))f(θ)dθ

subject to incentive constraints:

t(θ)− h(q(θ), θ)− Cn(mn(θ), θ) ≥ t(θ′)− h(q(θ′), θ)− Cn(mn(θ′), θ), for all θ and θ′ (11)

and the individual rationality constraint:

U(θ) ≡ t(θ)− h(q(θ), θ)− Cn(mn(θ), θ) ≥ 0. (12)

Let us first consider the benchmark case with no costly messages, i.e. n = 0. It is well-

known that under Assumption 2 (i) the solution to the principal’s problem involves selecting

an allocation qSB(θ) that maximizes the ‘virtual’ surplus

Γ(q, θ) ≡ v(q)− h(q, θ)− F (θ)

f(θ)
hθ(q, θ). (13)

Let θ∗ ∈ (θ, θ̄) be the unique solution to Γq(0, θ) = 0. Such θ∗ exists because Γq(0, θ) < 0,

Γq(0, θ) > 0 and by Assumption 2 (i) Γq(0, θ) is decreasing in θ. Thus, qSB(θ) > 0 if and

only if θ ∈ [θ, θ∗). In other words, it is optimal for the principal to exclude all types in

[θ∗, θ] by assigning them zero quantity, which is socially inefficient because all agent types

except θ can generate a positive social surplus. Under a procurement interpretation of our

model, this means that higher-cost firms are excluded from production. Under an equivalent

reinterpretation of our model as that of a monopolistic seller facing consumers with privately

known demands parameterized by θ, the seller excludes buyers with low but positive demands
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from consumption. Note that it follows from Assumption 2(i) that qSB(θ) is strictly decreasing

in θ over the region [θ, θ∗).

Next, let us consider the problem for n > 0. Solving (12) for t(θ) and substituting in the

objective, and replacing the incentive constraints (11) by the envelope condition associated

with the agent’s utility maximization, yields the following “relaxed” problem:

max
q(θ),mn(θ),U(θ)

∫ θ

θ
{v(q(θ))− h(q(θ), θ)− Cn(mn(θ), θ)− U(θ)} f(θ)dθ (14)

subject to individual rationality constraint (12) and the envelope condition:

U ′(θ) = −hθ(q(θ), θ)− Cnθ (mn(θ), θ). (15)

We will verify that the solution to the relaxed problem (14) subject to (12) and (15) satisfies

(11) and hence also solves the unrelaxed problem. To solve the relaxed problem, define the

Hamiltonian

H = {v(q)− h(q, θ)− Cn(mn, θ)− U}f(θ)− σ (hθ(q, θ) + Cnθ (mn, θ)) + ρU (16)

Maximizing (16) w.r.t. q and mn yields the first order conditions:

{vq(q)− hq(q, θ)}f(θ)− σhqθ(q, θ) ≤ 0 (= 0, if q > 0) (17)

∂Cn

∂mi
(mn, θ)f(θ) + σ

∂2Cn

∂mi∂θ
(mn, θ) = 0 (18)

The costate equation is

σ′(θ) = f(θ)− ρ(θ), (19)

Furthermore, the solution has to satisfy complementary slackness conditions

ρ(θ)U(θ) = 0, ρ(θ) ≥ 0, and U(θ) ≥ 0, (20)

Also, the following transversality conditions have to hold: σ(θ)U(θ) = 0, σ(θ̄)U(θ̄) = 0,

σ(θ) ≤ 0 and σ(θ̄) ≥ 0

To describe the solution to the relaxed problem, let {q̂(θ), m̂n(θ), σ̂(θ)} be the solution

to the system consisting of (17), (18) and −hθ(q, θ) − Cnθ (mn, θ) = 0. The latter condition

implies that U ′(θ) = 0 which holds on any interval where the individual rationality constraint

(12) is binding. So {q̂(θ), m̂n(θ), σ̂(θ)} is the solution to the relaxed problem applicable to

this case.

Next, let q̃(θ) and m̃n(θ) be the solutions to (17) and (18), respectively, when σ̃(θ) = F (θ).

It follows that m̃n(θ) = qSB(θ) where qSB(θ) is the standard second-best quantity, as noted

above. Thus {qSB(θ), m̃n(θ), σ̃(θ) = F (θ)} is the solution to the relaxed problem on an
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interval [θ, θ̂] where the individual rationality constraint is not binding so that ρ(θ) = 0. Note

that the costate equation and the transversality condition at θ require that σ̃(θ) = F (θ) in

this case.

Our next Theorem shows that the solution to the full (unrelaxed) program combines these

two allocation rules, with (qSB(θ), m̃n(θ)) applicable on the lower part of the type space and

(q̂(θ), m̂n(θ)) applicable on the upper part of the type space.

Theorem 3 Suppose Assumption (2) holds and recall that θ∗ ∈ (θ, θ) is the unique solution

to Γq(0, θ) = 0 with Γ(q, θ) defined in (13).

The allocation (q(θ),mn(θ)) in the optimal mechanism is continuous. Furthermore, there

exists θ̂ ∈ (θ, θ∗) such that:

(q(θ),mn(θ)) =

{
(qSB(θ), m̃n(θ)) if θ ∈ [θ, θ̂),

(q̂(θ), m̂n(θ)) if θ ∈ [θ̂, θ̄].
(21)

For every θ ∈ [θ, θ̂), m̃n(θ) > γn(θ), U(θ) > 0 and U ′(θ) < 0. For every θ ∈ [θ̂, θ̄),

q̂(θ) ∈ (qSB(θ), qFB(θ)), m̂n(θ) > γn(θ), and U(θ) = 0.

Theorem 3 shows that the principal can exploit the agent’s misrepresentation costs in the

optimal mechanism to improve the efficiency of the allocation and at the same time to reduce

the information rent of the agent. Indeed, positive surplus in our mechanism is obtained by

agent-types in [θ, θ̂] whereas, as noted in the proof, in the standard second-best mechanism

some types larger than θ̂ also get positive surplus. The principal of course incurs some addi-

tional cost as she ultimately has to compensate the agent for the latter’s misrepresentation

costs. However, this is compensated by the extra efficiency of the mechanism. Specifically, all

agent types in [θ̂, 1] consume a positive quantity since there is no exclusion in our mechanism,

as demonstrated by Theorem 4, below. Yet, those types earn zero surplus, so the benefit of

their consumption goes to the principal net of the misrepresentation costs.

Theorem 3 is related to Proposition 1 in Maggi and Rodriguez-Clare (1995) which char-

acterizes the optimal mechanism with a single costly message. In particular, both in their

and our models a non-trivial set of types [θ̂, θ] are held at the reservation utility level in our

optimal mechanism. So this property is robust to the number of messages. However, there

are important differences between our results. First, in our model the agent sends multiple

signals, and we focus on exploring how the number of signals affects the optimal mechanism

(see Theorem 5 below).

Second, our strategy of proof is different from Maggi and Rodriguez-Clare (1995), and as

a consequence we are able to establish our Theorem 3 and Theorems 4 and 5 under more

general conditions. In particular, unlike Maggi and Rodriguez-Clare (1995), we do not assume
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that the cost of a signal m depends only on the difference (m − θ) and do not require the

Hamiltonian to be concave.

Another difference between our results and those of Maggi and Rodriguez-Clare (1995) is

the next Theorem which shows that the optimal mechanism exhibits no exclusion when mis-

representation is costly. This result is important, because it underscores that the phenomenon

of exclusion, present in the standard case without costly signals, is not robust.

Theorem 4 In the optimal mechanism, q(θ) > 0 for all θ ∈ [θ, θ).

Thus, according to Theorem 4, no type who can generate a positive surplus is excluded in

the optimal mechanism as long as misrepresentation costs are positive, no matter how small.

The intuition for the absence of exclusion with costly signals is as follows. Any agent-type

that generates a positive surplus in the first-best is potentially profitable to the principal. The

reason some agent types are excluded in the second-best is that if the principal were to give

them a positive quantity, he would also have to raise the surplus of all agents with lower θ’s

(lower costs). But when misrepresentation costs are positive, this is no longer necessary: the

principal can prevent imitation by requiring agent-types that now receive a positive quantity

to send costly signals. Since lower-cost (lower θ) agent types also incur lower signal costs,

their incentives to imitate are weakened and exclusion is avoided.

Finally, we characterize the nature of the solution as the number of costly messages, n,

increases.

Theorem 5 Suppose that Cn(m1, ...,mn, θ) =
∑n

i=1 ci(mi, θ) and there exist v, v̄ ∈ (0,∞)

such that v ≤ ∂2c
∂m2

i
≤ v̄ and v ≤ | ∂2c

∂θ∂mi
| ≤ v̄. Then, as n → ∞, in the optimal mechanism

θ̂ → θ. Furthermore q̂(θ) → qFB(θ), mn
i (θ) → γi(θ) for all i, and Cn(mn(θ), θ) → 0,

uniformly in θ.

Theorem 5 implies that, as the number of messages gets large, the quantity allocation in

the optimal mechanism converges to the first-best one while the communication/signalling

cost becomes negligibly small. Thus, the principal extracts almost all surplus. The small

size of the communication costs and almost-efficiency of the allocation contrasts with typical

inefficiency of the second-best solution under adverse selection highlighted in the literature.

4.4 Endogenous Signal Space

One factor that could affect our results in the presence of additional fixed cost of each message.

For example, the principal may have to incur such cost for developing and administering a

test, and/or processing the information received form the agent. So in this subsection, we
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study the optimal number of messages n in a mechanism, when the principal incurs a fixed

cost G to elicit each message.

To simplify matters, we will treat n as a continuous variable. Let W (n) denote the princi-

pal’s expected surplus, gross of any fixed costs, in the optimal mechanism when the dimension

of the signal space is n. The principal then selects n to maximize W (n) − nG. We assume

that the agent’s signalling costs are additively separable across messages, i.e.

Cn(m1,m...,mn, θ) =
n∑
i=1

c(mi, θ),

and that
cmθ
cm

(m, θ) is increasing in m.

The latter assumption ensures that the solution to (18) is unique, and hence independent of

i. Henceforth, we shall therefore omit the subscript of the message mi. The optimal number

of messages n∗ is characterized in the following Lemma.

Lemma 1 Suppose that cmθ(m, θ)
2 − cmmθ(m, θ)cm(m, θ) > 0 for all (m, θ). Then W (n) is

a strictly concave function, and the marginal benefit of an additional message is given by

dW (n)

dn
=

∫ θ̄

θ

(
cθ(m(θ), θ)cm(m(θ), θ)

cmθ(m(θ), θ)
− c(m(θ), θ)

)
f(θ)dθ (22)

To help us interpret the solution, note that in the optimal mechanism dW (n)
dn = G. Further,

let us define:

K = min
(m,θ)

cθ(m, θ)cm(m, θ)

cmθ(m, θ)c(m, θ)
− 1, K = max

(m,θ)

cθ(m, θ)cm(m, θ)

cmθ(m, θ)c(m, θ)
− 1

Then we have

Lemma 2 Suppose that K > 0. Then, in the optimal mechanism,

K

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ ≤ G ≤ K

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ

The significance of Lemma 2 lies in characterizing the relationship between the principal’s

total cost of setting up the signalling system, nG, and the agent’s communication costs in the

optimal mechanism Cn(m, θ). As the Lemma shows, the ratio of the former to the latter is

between K and K. For example, if c(.) is quadratic i.e., c(m, θ) = (m− θ)2, then K = K = 1.

This implies that in the optimal mechanism the principal’s fixed cost of setting up the messages

nG and the agent’s communication cost C(m, θ) will be equal.
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To illustrate this result, consider the example in which welfare and signalling costs are

quadratic, and the type distribution is uniform. Specifically, suppose that v(q) = q − 1
2q

2,

h(q, θ) = θq, c(m, θ) = 1
2(m − θ)2, and F (θ) = θ for θ ∈ [0, 1]. Then by Theorem 3, for fixed

n the solution to the principal’s problem is given by:

q̃(θ) = 1− 2θ; m̃(θ) = 2θ

q̂(θ) =
n

n+ 1
(1− θ); m̂(θ) = θ +

1− θ
n+ 1

; σ̂(θ) =
1− θ
n+ 1

θ̂(n) =
1

n+ 2

Furthermore, the principal’s marginal benefit of an additional message is dW (n)
dn = 1+(n+1)2

6(n+1)3
.

Recall that every message generates some amount of additional welfare, because the al-

location profile gets closer to the first-best when the agent has to send more messages (see

Theorem 5). To illustrate the relation between the fixed cost G and the welfare generated

by an extra message, let us express the fixed cost as a fraction of the potential surplus gain

∆W = WFB−WSB, where WFB (WSB) is the total welfare under the first-best (second-best)

quantity allocation. Since WFB = 1
6 and WSB = 1

8 , we have

n 1 2 3 4 5 6 7 8 9 10

G/∆W 74% 62.5% 54.4% 48.2% 43.2% 39% 35.7% 32.8% 30.4% 28.2%

Thus in this example the principal will elicit at least 10 messages if the fixed cost of eliciting an

extra message does not exceed 30% of the potential welfare gain. Note that in the process, the

agent will incur expected message costs of at least 30% of the potential welfare gain, thereby

dissipating a substantial portion of the benefit. It should also be noted that with four signals,

the allocation q(θ) is already close to the first-best, as q̂(θ) is within 9% of qFB(θ).

5 Conclusions

This paper demonstrates that in environments with misrepresentation costs, the ability of the

principal to offer mechanisms in which an agent sends several messages significantly expands

the set of implementable outcomes.

Our results have a number interesting implications for screening and signaling. In partic-

ular, they suggests that the problem of the dissipation of resources and effort in unproductive

signalling, the so-called ‘rat race,’ may not be as significant as previously thought. Our paper

also indicates that an optimal method of dealing with the problem of asymmetric information

regarding employees’ abilities may involve the design of testing and interviewing procedures,

rather than on-the-job screening via incentive schemes. This can explain why incentive schemes
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offered in a variety of industries are not as steep and high-powered as incentive literature may

suggest. Indeed, our paper indicates that an employer can obtain a good estimate of a job-

candidate’s ability and at a low cost, if the tests and interviews can be designed to have the

following properties: (i) Each test identifies a candidate’s ability accurately if the candidate

does not attempt to manipulate the results of the test by expending effort; (ii) A candidate

incurs some cost of effort when (s)he attempts to misrepresent her type.

In our setting, the marginal cost of a message/signal can depend on the content and number

of other messages/signals sent by the agent. For example, the amount of effort that an agent

of ability θ may need to exert in the n-th test to perform at a level corresponding to ability

θ′ 6= θ may depend on how hard she worked to prepare for other tests and how many other

tests she has taken. Our results hold when the effect of the true ability θ on the cost of sending

signal m 6= γ(θ) does not go to zero “too quickly’ in n. Intuitively, the learning process cannot

be too fast so that performing at a certain level in a testing procedure involving n+ 1 tests is

only slightly more costly and requires a bit more effort than performing at the same level in

a testing procedure consisting of n tests.

It is conceivable that there may exist fixed costs incurred either by the principal or the

agent in association with each test or interview. The presence of such costs would limit the

feasible number of interviews/tests from above and perfect screening may become too costly.

Still, our results indicate that multi-test procedures would dominate the ones relying on one

test. Furthermore, it is likely that the fixed costs would be associated with a particular test,

and not a particular job-candidate. Then test-specific fixed costs will be amortized over all the

job-candidates who undergo it, and therefore would create less of an obstacle for increasing

the number of tests. In this case, our model predicts that larger firms who interview many

applicants will put more emphasis on rigorous testing and evaluation of candidates before

hiring, rather than on providing on-the-job incentives. This appears to be broadly consistent

with reality.

6 Appendix

Proof of Theorem 1.

Let µ(γn(θ)) denote the receiver’s posterior following the message profile γn(θ). Let us

show that µ(γn(θ)) must be supported on a sufficiently small neighborhood of θ. Indeed, we

will argue that if θ′ lies outside such a neighborhood, then for this type sending the message

profile γn(θ) is dominated by sending the message profile γn(θ′).

To this end, let u and u be the maximal and minimal possible sender’s utilities (gross of
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signaling cost), respectively. Formally,

u = max{u(x, θ) : θ ∈ Θ and x = BR(µ) for some µ ∈ ∆(Θ)},

and

u = min{u(x, θ) : θ ∈ Θ and x = BR(µ) for some µ ∈ ∆(Θ)}.

The continuity of the function u(·, ·) and the compactness of the sets X and Θ imply that

−∞ < u < u <∞.

Now, suppose that

||θ − θ′|| >
√
u− u
αnL2

. (23)

Using (23) we obtain:

min
µ
un(BR(µ), γn(θ′), θ′)− un(x∗(θ+), γn(θ), θ′) =

min
µ
un(BR(µ), γn(θ′), θ′)− un(x∗(θ+), γn(θ′′) + un(x∗(θ+), γn(θ′′)− un(x∗(θ+), γn(θ), θ′)

≥ u− u+ α||γn(θ′)− γn(θ)||2 > u− u+ αnL2||θ′ − θ||2 > 0, (24)

So for any type θ′ satisfying (23) sending γn(θ) is dominated by sending γn(θ′). This argument

applies when γn(θ) is an off-equilibrium message profile as well as when it is on the equilibrium

path.

Thus, supp(µ(γn(θ))) ⊂ B(θ,
√

u−u
αnL2 ) in any equilibrium satisfying the dominance crite-

rion. It follows immediately that µ(γn(θ)) converges weakly to δ(θ), the point mass at θ.

Since sender type θ can always choose to send the message profile γn(θ) we can bound the

equilibrium utility of this type from below as follows:

Un(θ) = un(x̃n(θ), m̃n(θ), θ) ≥ un(BR(µ(γn(θ)), γn(θ), θ) = u(BR(µ(γn(θ)), θ) (25)

Because BR(µ) is single-valued and µ(γn(θ)) converges weakly to δ(θ), we then have

limn→∞BR(µ(γn(θ))→ x∗(θ). Hence,

lim
n→∞

inf Un(θ) ≥ u(x∗(θ), θ). (26)

Next, we show that µ(m̃n(θ)) converges weakly to δ(θ) for all θ. Indeed, suppose to

the contrary that for each n there existed θ
′
n such that m̃n(θ′n) = m̃n(θ), and such that

θ
′
n → θ′ 6= θ.13 Then we claim that either ||m̃n(θ)− γn(θ)|| → ∞ or ||m̃n(θ)− γn(θ′n)|| → ∞
13If θ′n does not converge, we let θ′ be the limit of any convergent subsequence. Without loss of generality,

let this subsequence be the original sequence.
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as n→∞. Indeed, suppose there were a constant k <∞ such that ||m̃n(θ)− γn(θ)|| ≤ k and

||m̃n(θ)− γn(θ′n)|| ≤ k, for all n. Then we have:

L
√
n||θ′n − θ|| ≤ ||γn(θ′n)− γn(θ)|| = || (m̃n(θ)− γn(θ))−

(
m̃n(θ)− γn(θ′n)

)
|| ≤

||m̃n(θ)− γn(θ)|| + ||m̃n(θ)− γn(θ′n)|| ≤ 2k.

Since limn→∞ ||θ′n − θ|| = ||θ′ − θ|| = ε > 0, the outer inequalities produce a contradiction.

Suppose first that ||m̃n(θ)− γn(θ)|| → ∞. Then we have:

Un(θ) = un(x̃n(θ), m̃n(θ), θ) ≤ un(x̃n(θ), γn(θ), θ)−α ||m̃n(θ)−γn(θ)||2 ≤ umax−α ||m̃n(θ)−γn(θ)||2,

where umax = max{u(x, θ) : θ ∈ Θ, x = BR(µ) for some µ ∈ ∆(Θ)}. The above inequality

implies that Un(θ)→ −∞, contradicting (26). So we cannot have ||m̃n(θ)− γn(θ)|| → ∞.

A parallel argument establishes that we cannot have ||m̃n(θ) − γn(θ′n)|| → ∞ either. It

follows that for every sequence θ
′
n such that m̃n(θ′n) = m̃n(θ) it must be that θ′n → θ. We

conclude that as n grows without bound, µ(m̃n(θ)) converges weakly to δ(θ) for all θ.

It then follows from the single-valuedness of BR(µ) that x̃n(θ) = BR(µ(m̃n(θ))→ x∗(θ).

Therefore, we have

Un(θ) = un(x̃n(θ), m̃n(θ), θ) ≤ un(BR(µ(m̃n(θ))), γn(θ), θ) = u(BR(µ(m̃n(θ))), θ)→ u(x∗(θ), θ)

(27)

Combining (26) and (27) yields

lim
n→∞

Un(θ) = u(x∗(θ), θ), for all θ,

completing the proof of the theorem. Q.E.D.

Proof of Theorem 2. Fix any pair of twice continuously differentiable functions q :

Θ → Q and t : Θ → R, and let U(θ) be the associated payoff of agent-type θ i.e., U(θ) =

t(θ) − h(q(θ), θ). We will show that there exists N < ∞ and a sequence of transfers and

messages rules (tn,mn), such that for all n ≥ N and all θ ∈ Θ, (q(.), tn(.),mn(.)) is an

incentive compatible mechanism which provides each agent-type with the desired net payoff

U(θ) i.e.,

U(θ) ≡ tn(θ)− h(q(θ), θ)− Cn(mn(θ), θ) = max
θ′∈Θ
{tn(θ′)− h(q(θ′), θ)− Cn(mn(θ′), θ)} (28)

Significantly, we will also show that the total message cost Cn(mn(θ), θ) of every type θ

converges to zero as n increases.

The proof goes through several steps. In Step (i) we construct the message rule mn(θ). In

Step (ii) we show that show that ||mn(θ) − γn(θ)|| → 0, uniformly in θ. Step 3 establishes
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that, under out message rule mn(θ), Cn(mn(θ), θ) goes to zero in n. Finally, in Step (iv) we

define the transfer rule tn(θ) and establish the incentive compatibility of our mechanism.

Step (i). First, let us construct the message rule mn(θ).

Let zn : Θ → Rl and for each i set mi(θ) = γi(θ) + zn(θ). We choose zn(θ) as follows.

Assuming that incentive constraints in (28) hold, the envelope theorem implies that

DθU(θ) = −Dθh(q(θ), θ)−DθC
n(mn(θ), θ) (29)

Therefore we select zn(θ) so that (29) holds. For each θ, (29) consists of l equations in the l

unknown variables zn(θ).

We claim that for sufficiently large n, such a solution exists for all θ. To establish this, for

each n define the function fn : Rl → Rl by

fn(z) = n−(1−α)DθC
n(γ1(θ) + z, ..., γn(θ) + z, θ),

and let rn(θ) = n−(1−α) [−Dθh(q(θ), θ)−DθU(θ)]. Then we may rewrite (29) as

fn(z) = rn(θ) (30)

We now claim that fn(0) = 0. Indeed, differentiating the identity Cn(γn(θ), θ) ≡ 0, we

obtain D
mn
Cn(γn(θ), θ)Dθγ

n(θ)+DθC
n(γn(θ), θ) = 0. Since mn = γn(θ) uniquely minimizes

Cn(·, θ), we have D
mn
Cn(γn(θ), θ) = 0, establishing that DθC

n(γn(θ), θ) = 0, and hence that

fn(0) = 0. Furthermore, we may calculate

Dfn(0) = n−(1−α)
n∑
i=1

D2
θmi

Cn(γn(θ), θ).

By Assumption 1(ii), we have ||Dfn(0)z)|| ≥ ω1||z||, implying that Dfn(0) is nonsingular.

Thus we have all conditions for applying the inverse function theorem to equation (30). How-

ever, some care must be taken, because the function fn(·) varies with n, and we have to ensure

that for all n sufficiently large, rn(θ) is sufficiently close to 0.

To this effect, let us define the function s : Rl → Rl by

s(z) = z−Dfn(0)−1(fn(z)− y).

Observe that z is a fixed point of s(·) if and only if fn(z) = y. Observe also that

Ds(z) = I −Dfn(0)−1Dfn(z),

where I is an identity matrix. Now select ε = ω1
2 , and let δ be as given by Assumption 1(i).

Then for z such that
√
n||z|| < δ we have:

||Ds(z)|| = ||Dfn(0)−1 [Dfn(0)−Dfn(z)] ||

≤ ||Dfn(0)−1|||| [Dfn(0)−Dfn(z)] || < ε ||Dfn(0)−1|| ≤ ε

ω1
=

1

2
,
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where the penultimate inequality follows from Assumption 1(ii). It follows from the Mean

Value inequality that if z1, z2 ∈ B(0, δ√
n

), then

||s(z1)− s(z2)|| ≤ max
z∈B
||Ds(z)|| ||z1 − z2|| ≤

1

2
||z1 − z2||

Thus s(·) is a contraction on the closed ball B(0, δ√
n

).

Now let t = δω1

4
√
n

. Then for any y ∈ B(0, t), we have

||s(0)|| = ||Dfn(0)−1(fn(0)− y)|| ≤ ||Dfn(0)−1|| t ≤ δ

4
√
n
<

δ

2
√
n

It follows that

||s(z)|| = ||s(z)− s(0) + s(0)|| ≤ ||s(z)− s(0)|| + ||s(0)|| ≤ 1

2
||z|| +

δ

2
√
n
≤ δ√

n
.

Hence s maps B(0, δ√
n

) into itself. By the contraction mapping theorem, for any y ∈ B(0, t)

there exists a unique z ∈ B(0, δ√
n

) such that s(z) = z, i.e. such that y =fn(z).

It remains to be shown that for sufficiently large n, it is the case that rn(θ)∈ B(0, t).

Because the function −Dθh(q(θ), θ)−DθU(θ) is continuous in θ and Θ is compact, it follows

from the Weierstrass Theorem that there exists a constant λ > 0 s.t. || − Dθh(q(θ), θ) −
DθU(θ)|| ≤ λ for all θ. Thus, ||rn(θ)|| ≤ λn−(1−α) ≤ δω1

4 n−
1
2 holds whenever n

1
2
−α ≥ 4λ

δω1
.

Let N1 be the smallest integer greater than
(

4λ
δω1

) 2
1−2α

. We may then conclude that whenever

n ≥ N1, there exists a unique zn(θ) ∈ B(0, δ√
n

) solving (29).

Step (ii) Let us now show that ||mn(θ)− γn(θ)|| → 0, uniformly in θ. To this effect, we

will tighten the inequality ||zn(θ)|| ≤ δ√
n

. We will establish that ||zn(θ)|| ≤ 2λ
ω1
n−(1−α), and

hence ||mn(θ)− γn(θ)|| =
√
n||zn(θ)|| ≤ 2λ

ω1
n−( 1

2
−α).

To this end, let t ∈ [0, 1] and define mn(t) to be the vector whose components are mi(t) =

γi(θ) + t z. We first claim that whenever ||z|| < δ√
n

, we have

||DθC
n(mn, θ)−DθC

n(γn(θ), θ)|| ≥ ω1

2
n1−α||z||.

To establish the claim, define ρ(t) = DθC
n(mn(t), θ)−DθC

n(γn(θ), θ). Then we have

DθC
n(mn, θ)−DθC

n(γn(θ), θ) = ρ(1)− ρ(0) =
∫ 1

0 Dρ(t)dt =
∫ 1

0

∑n
i=1D

2
θmi

Cn(mn(t), θ)zdt

=
∫ 1

0

∑n
i=1

{
D2
θmi

Cn(γn(θ), θ) +
[
D2
θmi

Cn(mn(t), θ)−D2
θmi

Cn(γn(θ), θ)
]}

zdt

=
∑n

i=1D
2
θmi

Cn(γn(θ), θ)z +
∫ 1

0

[
D2
θmi

Cn(mn(t), θ)−D2
θmi

Cn(γn(θ), θ)
]
zdt
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It then follows from Assumptions 1(i) and (ii) that

||DθC
n(mn, θ)−DθC

n(γn(θ), θ)|| ≥ ω1n
1−α||z|| −

∫ 1

0
||D2

θmi
Cn(mn(t), θ)−D2

θmi
Cn(γn(θ), θ)||||z||dt

≥ ω1n
1−α||z|| − ε||z|| ≥ ω1

2
n1−α||z||. (31)

Now recall from the previous step that λ ≥ ||−Dθh(q(θ), θ)−DθU(θ)|| = ||DθC
n(mn, θ)−

DθC
n(γn(θ), θ)||. Combining this inequality with inequality (31) and recalling that ||zn(θ)|| ≤

δ√
n

, so it must satisfy (31), we obtain that ||zn(θ)|| ≤ 2λ
ω1
n−(1−α), as to be shown.

Step (iii). Next, let us show that Cn(mn(θ), θ)→ 0.

It follows from Assumption 1(v) and Step (ii) above that:

Cn(mn(θ), θ) ≤ ω3n
1−α||z(θ)||2 ≤

(
λ

ω1

)2

ω4n
−(1−α)

Consequently, Cn(mn(θ), θ) → 0, uniformly in θ. From (28), this also implies that tn(θ) →
t(θ), uniformly in θ, completing the proof of the step.

Step (iv). Next, define the transfer rule tn(θ) as follows:

tn(θ) = h(q(θ), θ) + Cn(mn(θ), θ) + U(θ) (32)

where mn(.) is the message rule defined in Step (i).

The mechanism (q(.), tn(.),mn(.)) is incentive compatible and gives each type θ the net

payoff U(θ) if and only if for all θ′, θ ∈ Θ we have:

U(θ′n(θ)− h(q(θ), θ′n(mn(θ), θ′).

Substituting (32) into the above inequality we obtain the following equivalent condition:

V (θ′, θ) ≡ h(q(θ), θ)− h(q(θ), θ′) + U(θ)− U(θ′) + Cn(mn(θ), θ)− Cn(mn(θ), θ′) ≤ 0 (33)

In words, V (θ′, θ) is the amount by which the payoff of type θ′ changes when she imitates θ

instead of following her truthful strategy.

In the rest of the proof we will show that V (θ′, θ) ≤ 0 for all θ′, θ ∈ Θ. The proof consists

of two parts that deal with, correspondingly, large deviations when ||θ − θ|| ≥ δ
2 for some

δ > 0, and local deviations when ||θ − θ|| < δ
2 .

First, let us show that for sufficiently high n large deviations from truthtelling are not

optimal. To this end, pick ε ∈ (0,min{1, ω1}), and consider the corresponding δ as given by

Assumption 1(iii). To establish this claim, we will show that there exists N2 ,N1 ≤ N2 <∞,

such that for all n ≥ N2 and all θ′, θ ∈ Θ satisfying ||θ′ − θ|| ≥ δ
2 , we have V (θ′, θ) < 0.
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To this effect, observe that by Assumption 1(iv) we have

Cn(mn(θ), θ′)− Cn(mn(θ), θ) ≥ ω3

nα
||mn(θ)− γn(θ′)||2 − ω4

nα
||mn(θ)− γn(θ)||2

It follows from Assumption 1(vi) that

||γ(θ)− γ(θ′)||2 =
n∑
i=1

||γi(θ)− γi(θ)||2 ≥ nL2 ||θ − θ′||2

Moreover, since ||a+ b|| ≥ ||a| − ||b|| for any two vectors a and b, we have

||mn(θ)− γn(θ′)|| = ||γn(θ)− γn(θ′) + mn(θ)− γn(θ)||

≥ ||γn(θ)− γn(θ′)|| − ||mn(θ)− γn(θ)|| ≥
√
nL ||θ − θ′|| −

√
n||zn(θ)|| ≥

√
n(
δL

2
− 2λ

ω1
n−(1−α))

Now select µ to satisfy ω3(1− µ)2−ω4µ
2 ≥ ω3

2 and let N21 ≥ N1 be such that for all n ≥ N21

we have 2λ
ω1
n−(1−α) ≤ δL

2 µ. It follows that ||mn(θ)− γn(θ′)|| ≥
√
n δL2 (1− µ).

By step (ii) we have ω4
nα ||m

n(θ)−γn(θ)||2 = ω4
nα n ||zn(θ)||2 ≤ ω4

(
2λ
ω1

)2
n−(1−α). It follows

that

Cn(mn(θ), θ′)− Cn(mn(θ), θ) ≥ ω3n
(1−α)

(
δL

2
(1− µ)

)2

− ω4

(
2λ

ω1

)2

n−(1−α)

≥ n(1−α)

(
δL

2

)2 (
ω3(1− µ)2 − ω4µ

2
)
≥ n(1−α)

(
δL

2

)2 ω3

2

Now define

κ = |max
θ,θ′

{
h(q(θ), θ)− h(q(θ), θ′) + U(θ)− U(θ′)

}
|

Next, let N22 ≥ N1 be such that n(1−α)
(
δL
2

)2 ω3
2 ≥ 2κ for all n ≥ N22. Then we have

V (θ′, θ) ≤ −κ < 0.

Thus, letting N2 = max{N21, N22}, we conclude that for every δ > 0, n ≥ N2, and all θ

and all θ′ such that ||θ − θ′|| ≥ δ
2 , we have V (θ′, θ) ≤ −κ < 0, as was to be shown.

It remains to establish that V (θ′, θ) < 0 for all θ′ 6= θ such that ||θ − θ′|| < δ
2 when n is

sufficiently large. We will do so by showing that at all such θ′ 6= θ the directional derivative

of V (., θ) at θ′ in the direction of θ is positive.

Differentiating (33) and then using (29) we get:

Dθ′V (θ′, θ) = −Dθh(q(θ), θ′)−DθU(θ′)−DθC
n(mn(θ), θ′) =

−
(
Dθh(q(θ), θ′)−Dθh(q(θ), θ)

)
−
(
DθU(θ′)−DθU(θ)

)
−
(
DθC

n(mn(θ), θ′)−DθC
n(mn(θ), θ)

)
(34)
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By (34), the directional derivative of V (·, θ) at θ′ in the direction of θ is given by:

Dθ′V (θ′, θ)(θ − θ′) = −
(
Dθh(q(θ), θ′)−Dθh(q(θ), θ)

)
(θ − θ′)−

(
DθU(θ′)−DθU(θ)

)
(θ − θ′)

−
(
DθC

n(mn(θ), θ′)−DθC
n(mn(θ), θ)

)
(θ − θ′)

Since the closed ball B(θ, δ2) is convex and θ′ ∈ B(θ, δ2) it follows that θ + t(θ′ − θ) ∈ B(θ, δ2)

for all t ∈ [0, 1]. Now let ξ(t) = DθC
n(mn(θ), θ + t(θ′ − θ)). Then we have

DθC
n(mn(θ), θ′)−DθC

n(mn(θ), θ) = ξ(1)−ξ(0) =

1∫
0

Dξ(t)dt =

1∫
0

(θ′−θ)′DθθC
n(mn(θ), θ+t(θ′−θ))dt

Now select N21 such that for all n ≥ N21 we have λ
ω1
nα−

1
2 < δ

2 . It follows that for all n ≥ N21

and all t ∈ [0, 1] we have

||(mn, θ+t(θ′−θ)))−(γn(θ), θ)|| ≤ ||mn−γn(θ)|| +||θ′−θ|| ≤
√
n ||zn(θ)|| +

δ

2
≤ λ

ω1
nα−

1
2 +

δ

2
< δ

Next, define matrix A as follows: A = DθθC
n(mn(θ), θ + t(θ′ − θ)) − DθθC

n(γn(θ), θ). By

Assumption 1(iii), ||A|| < εn1−α. Furthermore, A is a symmetric matrix, so that all of its

eigenvalues are real. It follows that x′Ax ≤ ||A||||x||2. Indeed, letting Λ denote the matrix of

eigenvalues of A, and K the orthogonal basis of its eigenvectors, we have x′Ax = x′K ′ΛKx =

y′Λy =
∑n

i=1 λiy
2
i ≤

∑n
i=1 |λi|y2

i ≤ maxi |λi|
∑n

i=1 y
2
i = ||A||

1
2 ||y||2 = ||A||

1
2 ||x||2. Hence we

have:

(θ′ − θ)′DθθC
n(mn(θ), θ + t(θ′ − θ))(θ′ − θ) = (θ′ − θ) [DθθC

n(γn(θ), θ) +A] (θ′ − θ)

≥ ω2n
1−α||θ′ − θ||2 − ||A||

1
2 ||θ′ − θ||2 > (ω2 − ε)n1−α||θ′ − θ||2 > ω2

2
n1−α||θ′ − θ||2

Let β = maxθ′,θ∈Θ ||Dθθ − h(q(θ), θ′)−DθθU(θ′)||. Then

Dθ′V (θ′, θ)(θ − θ′) ≥
(ω2

2
n1−α − β

)
||θ′ − θ||2

Let N32 ≥ N2 be such that n1−α > 2β
ω2

for all n ≥ N32, and let N3 = max{N31, N32}. Then

for all n ≥ N3, all θ and θ
′ ∈ B(θ, δ2) the directional derivative Dθ′V (θ′, θ)(θ − θ′) is strictly

positive, implying that θ′ = θ uniquely maximizes V (θ′, θ) over B(θ, δ2). Since V (θ, θ) = 0, it

follows that V (θ′, θ) ≤ 0 for θ′ ∈ B(θ, δ2). Q.E.D.

Proof of Theorem 3: The proof proceeds through several claims.

In the initial claims, we characterize the solution to the relaxed program (14) subject to

(12) and (15). Then to complete the proof, we show that the solution to the relaxed program

is globally incentive compatible, and hence solves the full unrelaxed program.

36



Claim 1. There exists θ1 ∈ (θ, θ) such that U(θ) > 0 and hence σ(θ) = F (θ) for all

θ ∈ [θ, θ1).

The proof is by contradiction. So suppose to the contrary that such θ1 does not exist. As

a solution to the optimal control problem, U(.) must be continuous, and so U(θ) = 0. By the

transversality condition at θ, σ(θ) ≤ 0. So, the first-order conditions (17) and (18) imply that

q(θ) ≥ qFB(θ) and mi(θ) ≤ γi(θ). Since hqθ > 0, Cnθmi < 0 and Cnθ (γn(θ), θ) = 0, we have:

U ′(θ) = −hθ(q(θ), θ)− Cnθ (mn(θ), θ) ≤ −hθ(qFB(θ), θ)− Cnθ (γn(θ), θ) < 0,

The last inequality holds because qFB(θ) > 0 and hθ(q, θ) > 0 when q > 0. So, U(θ + ε) < 0

for ε > 0 sufficiently small. But this contradicts the individual rationality of the mechanism.

Finally, since U(θ) > 0 on [θ, θ1), by the transversality condition we have σ(θ) = 0, and

by complementary slackness condition (20) we gave ρ(θ) = 0. So by the costate equation (19)

σ(θ) = F (θ) on this interval.

Claim 2. 0 < σ(θ) for all θ ∈ (θ, θ], and σ(θ) ≤ F (θ) for all θ ∈ [θ, θ].

The claim that σ(θ) ≤ F (θ) follows from the transversality condition σ(θ) ≤ 0, the costate

equation (19) and the complementary slackness condition ρ(θ) ≥ 0 in (20).

Now, let us show that σ(θ) > 0 for all θ ∈ (θ, θ). By claim 1, σ(θ) = 0, and σ(θ) = F (θ) > 0

for all θ ∈ [θ, θ1). By the transversality condition, σ(θ) ≥ 0. Also, by the costate equation

(19), σ′(θ) > 0 for all θ s.t. U(θ) > 0. So to complete the proof it suffices to show that there

does not exist θ, θ < θ, such that U(θ) = 0 and σ(θ) = 0. The proof is by contradiction.

So suppose that such θ does exist. Then q(θ) = qFB(θ) > 0 by (17), and mn(θ) = γn(θ) by

(18). Since Cnθ (γn(θ), θ) = 0, it then follows from (15) that U ′(θ) = −hθ(qFB(θ), θ) < 0. So,

U(θ+ δ) < 0 for δ > 0 sufficiently small. But this contradicts the individual rationality of the

mechanism, thereby showing that σ(θ) > 0 for all θ ∈ (θ, θ).

Finally, let us show that σ(θ) > 0. Suppose to the contrary that we had σ(θ) = 0.

Mimicking the proof from the previous paragraph, this implies that U ′(θ) < 0, so we have

U(θ) > 0 in a left neighborhood of θ. Since σ′(θ) > 0 whenever U(θ) > 0, this implies that

σ(θ) < 0 over this interval. By the previous result, this then implies that we must have

U(θ) > 0 for all θ ∈ (θ, θ), implying σ(θ) < 0, contradicting that σ(θ) = 0. This establishes

that σ(θ) > 0.

Claim 3. For any θ ∈ [θ, θ] and fixed σ ≥ 0 let q(σ, θ) and mn(σ, θ) maximize the

Hamiltonian H in (16) w.r.t. q and mn, respectively.

Then q(σ, θ) is decreasing in σ, strictly so whenever q(σ, θ) > 0, and mn(σ, θ) is increasing

in θ.

By definition, q(σ, θ) satisfies (17) and is the solution in q to

max
q≥0

{
v(q)− h(q, θ)− σ

f(θ)
hθ(q, θ)

}
, (35)
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while mn(σ, θ) satisfies (18) and is the solution in mn to

min
mn∈Rn

{
Cn(mn, θ) +

σ

f(θ)
Cnθ (mn, θ)

}
. (36)

The existence of q(σ, θ) and mn(σ, θ) is guaranteed by the Weierstrass theorem because, re-

spectively: (i) q(σ, θ) belongs to [0, qFB(θ)]; (ii) the value of (36) goes to ∞ as ||mn|| → ∞.14

Next, observe that the cross partial of the objective (35) in (q, σ) is equal to− 1
f(θ)hqθ(q, θ) <

0. Hence it has decreasing differences in (q, σ), and so q(σ, θ) must be decreasing in σ by mono-

tone comparative statics. Similarly, mn(σ, θ) is increasing in σ. Indeed, the cross-partial of the

objective in (36) equals 1
f(θ)

∂2Cn

∂mi∂θ
(mn, θ) < 0, so it has decreasing differences in (mn, σ). Fur-

thermore (36) is submodular in mn because ∂2Cn

∂mi∂mj
+ σ

f(θ)
∂3Cn

∂mi∂mj∂θ
< 0. When ∂3Cn

∂mi∂mj∂θ
≤ 0

this inequality follows from Assumption 2 (iii); when ∂3Cn

∂mi∂mj∂θ
> 0, it follows from Assumption

2 (ii) and the fact that 0 ≤ σ ≤ F (θ).

Claim 4. Let U ′(σ, θ) = −hθ(q(σ, θ), θ)− Cnθ (mn(σ, θ), θ).

Then for every θ ∈ [θ, θ], there exists a unique σ̂(θ), such that U ′(σ, θ) = 0 if σ = σ̂(θ),

U ′(σ, θ) < 0 if σ < σ̂(θ) and U ′(σ, θ) > 0 if σ > σ̂(θ).

To prove this Claim, first observe that from the definition of U ′(σ, θ) it follows that

∂U ′(σ, θ)

∂σ
= −hqθ

∂q(σ, θ)

∂σ
−

n∑
i=1

∂2Cn

∂mi∂θ

∂mi(σ, θ)

∂σ

Since ∂q(σ,θ)
∂σ ≤ 0 and ∂mi(σ,θ)

∂σ > 0, it follows that U ′(σ, θ) is strictly increasing in σ, and hence

there exists at most one value σ such that U ′(σ, θ) = 0. To show that such a value exists, let

us show that U ′(σ, θ) < 0 at σ = 0, and U ′(σ, θ) > 0 when σ is sufficiently large.

First, consider σ = 0. It follows from (35) and (36) that for all θ, q(0, θ) = qFB(θ) and

mn(0, θ) = γn(θ), respectively. Since Cnθ (γ(θ), θ) = 0, we have U ′(0, θ) = −hθ(qFB(θ), θ) < 0.

Next, let α(θ) = minq∈[0,qFB(θ)] hqθ(q, θ) and let σ =
v′(0)−hq(0,θ)

α(θ) f(θ). We now claim that

q(σ, θ) = 0 for all σ ≥ σ. Suppose to the contrary that q(σ, θ) > 0 for some σ ≥ σ. Note that

q(σ, θ) ≤ qFB(θ) because σ > 0. Moreover, q(σ, θ) satisfies (17) from which we have:

vq(q(σ, θ))− hq(q(σ, θ), θ) =
σ

f(θ)
hqθ(q(σ, θ), θ) ≥

σ

f(θ)
hqθ(q(σ, θ), θ) ≥ vq(0)− hq(0, θ) (37)

But (37) contradicts the assumption that vq(q)− hq(q, θ) is strictly decreasing in q.

Now fix some σ s.t. σ ≥ σ. Then q(σ, θ) = 0. Since h(0, θ) = 0 for all θ, we have

hθ(0, θ) = 0. Furthermore, mn(σ, θ) > γn(θ) since σ > 0, mn(0, θ) = γn(θ), and mn(σ, θ) is

14Henceforth, we will also assume that q(σ, θ) and mn(σ, θ) are unique. This can always be guaranteed by

assuming that the objective function in (35) is quasiconcave in q, and that the objective function in (36) is

quasiconvex in mn.

38



increasing in σ. Because Cnθ (γn(θ), θ) = 0, and ∂2Cn

∂θ∂mi
< 0, we have Cnθ (mn(σ, θ), θ) < 0. So

in this case U ′(σ, θ) = −Cnθ (mn(σ, θ), θ) > 0 for σ ≥ σ.

Claim 5. Let σ(θ) = F (θ) and U ′(F (θ), θ) = −hθ(q(F (θ), θ), θ) − Cnθ (mn(F (θ), θ), θ).

Define θ̂ = inf{θ|θ ≤ θ, U ′′(F (θ), θ) > 0}. Then 0 < θ̂ ≤ θ∗.
Combining the arguments in Claim 1 and Claim 4 we obtain that σ̂(θ) > 0 = F (θ). So,

U ′(0, θ) < 0 and therefore θ̂ > 0.

Now, suppose that contrary to the Claim, θ̂ > θ∗. From (35) and (36), or alternatively, the

first-order conditions (17) and (18). it follows that for all θ ∈ [θ∗, θ̂), q(F (θ), θ) = qSB(θ) = 0

and m̃i(F (θ), θ) > γi(θ) for all i. The former implies that hθ(q(F (θ), θ), θ) = hθ(0, θ) = 0 and

the latter implies that Cnθ (m̃n(F (θ), θ), θ) < 0. So for any θ ∈ (θ∗, θ̂), we have U ′(F (θ), θ) > 0,

a contradiction. to the definition of θ̂.

Claim 6. Type θ̂ satisfies θ̂ = inf{θ : σ̂(θ) ≤ F (θ)}.
Combining Claim 4 with the definition of θ̂ in Claim 5 yields this Claim.

Claim 7. In the solution to the relaxed program q(θ) = q̃(θ) = qSB(θ), mn(θ) = m̃n(θ)

and U ′(θ) ≤ 0 for all θ ∈ [θ, θ̂).

By Claim 6, σ̂(θ) ≥ F (θ) for all θ ∈ [θ, θ̂). By Claim 2, σ(θ) ≤ F (θ). So to prove that

σ(θ) = F (θ) on this interval, we need to rule out σ(θ) < F (θ) for some θ ∈ [θ, θ̂). Suppose

to the contrary that suppose there exists θ2 ∈ [θ, θ̂) such that σ(θ2) < F (θ2). By Claim 1, we

have θ2 > θ1. By the costate equation (19) there then exists an open set (θ3, θ4) ⊆ (θ1, θ2)

such that ρ(θ) > 0 and so σ(θ) < F (θ) ≤ σ̂(θ) for all θ ∈ (θ3, θ4). But then for all θ ∈ (θ3, θ4)

we have both that U(θ) = 0 and, by claim 4, U ′(θ) < 0. This contradiction establishes that

σ(θ) = F (θ), and so q(θ) = q̃(θ) = qSB(θ), mn(θ) = m̃n(θ) for all θ ∈ [θ, θ̂].

Claim 8. In the optimal mechanism q(θ) = q̂(θ), mn(θ) = m̂n(θ) and U(θ) = 0 for all

θ ∈ [θ̂, θ].

Let us show that in the solution to the relaxed program U(θ) = 0 for θ in some interval

[θ̂, θ̂+ ε]. Suppose to the contrary that the individual rationality constraint is non-binding on

an interval [θ̂, θ̂ + δ), for some δ > 0. Then by complementary slackness, we have ρ(θ) = 0 on

this interval. So from σ(θ̂) = F (θ̂) and the costate equation (19) it follows that σ(θ) = F (θ)

and hence we have q(θ) = qSB(θ),mn(θ) = m̃n(θ) on [θ̂, θ̂ + δ).

So on the interval [θ̂, θ̂ + ε) for some ε ∈ (0, δ) we have U ′(θ) = U ′(F (θ), θ) > 0 by the

definition of θ̂ in Claim 5, and qFB(θ) > q̂(θ) > qSB(θ) = q(F (θ), θ), γ(θ) < m̂n(θ) < m̃n(θ)

by Claim 3. But then the value of the relaxed program can be strictly increased by using the

solution (q̂(θ), m̂n(θ), σ̂(θ)) and setting U(θ) = 0 on the interval [θ̂, θ̂ + ε). This is so because

v(q̂(θ), θ)− h(q̂(θ), θ)− Cn(m̂n(θ), θ) > v(qSB(θ), θ)− h(qSB(θ), θ)− Cn(m̃n(θ), θ)

This contradiction establishes that we must have U(θ) = 0 for θ ∈ [θ̂, θ̂ + δ). This can easily

done by choosing U(θ) appropriately.

39



A similar argument establishes that we cannot have U ′(θ) > 0 in the solution of the relaxed

program at any other θ, θ > θ̂.

Finally, we cannot have U ′(θ) < 0 in the solution of the relaxed program at any θ, θ > θ̂,

because it would violate individual rationality.

Claim 9. Global incentive compatibility of the solution to the relaxed program.

It remains to show that this solution satisfies incentive constraints (11) i.e., for any pair

of types (θ, θ′) we have:

U(θ)− U(θ′) + h(q(θ′), θ) + Cn(mn(θ′), θ)− h(q(θ′), θ′)− Cn(mn(θ′), θ′) ≥ 0 (38)

First, suppose that θ′ ∈ [θ̂, θ] i.e. U(θ′) = 0. We will consider the case θ′ > θ. The proof

for the case θ′ < θ is similar. Then we can rewrite the left-hand side of inequality (38) as

follows.

U(θ)− U(θ′)−
∫ θ′

θ
hθ(q(θ

′), s) + Cnθ (mn(θ′), s)ds ≥∫ θ′

θ
hθ(q(θ

′), θ′) + Cnθ (mn(θ′), θ′)− hθ(q(θ′), s)− Cnθ (mn(θ′), s)ds

=

∫ θ′

θ

∫ θ′

s
hθθ(q(θ

′), t) + Cnθθ(m
n(θ′), t)dtds > 0 (39)

The first inequality holds because U(θ) ≥ 0, and because θ′ ∈ [θ̂, θ] implies U(θ′) = 0 as well

as U ′(θ′) = −hθ(q(θ′), θ′)− Cnθ (mn(θ′), θ′) = 0. The second inequality holds because the first

integral is non-positive as hθθ ≥ 0 and Cnθθ ≥ 0, establishing the incentive compatibility of our

mechanism for this case.

Next, suppose that θ, θ′ ∈ [θ, θ̂]. Over this region, the solution is described by {qSB(θ), m̃n(θ), F (θ)},
and incentive compatibility holds if qSB(θ) is decreasing in θ, and m̃n(θ) is increasing in θ

(Guesnerie and Laffont, 1984, Theorem 2). That qSB(θ) is decreasing in θ follows from As-

sumption 2(i). Next, as a maximizer of the Hamiltonian H, m̃n(θ) maximizes:

−Cn(mn, θ)− F (θ)

f(θ)
Cnθ (mn, θ)

By Assumption 2(ii), this objective has strictly increasing differences in (mn, θ), and is super-

modular in mn. Therefore, m̃n(θ) is increasing in θ, establishing incentive compatibility for

this case.

Finally, let us show that incentive constraints hold for any pair (θ, θ′) such that θ ∈ (θ̂, 1]

and θ′ ∈ [θ, θ̂]. As shown above, incentive constraints hold between any θ ∈ (θ̂, 1] and θ̂, and

also between θ̂ and any θ′ ∈ [θ, θ̂] i.e,

U(θ)− U(θ̂) + h(q(θ̂), θ) + Cn(m̃n(θ̂), θ)− h(q(θ̂), θ̂)− Cn(m̃n(θ̂), θ̂) ≥ 0

U(θ̂)− U(θ′) + h(q(θ′), θ̂) + Cn(m̃n(θ′), θ̂)− h(q(θ′), θ′) ≥ 0
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Adding the above inequalities, we get:

U(θ)− U(θ′) + h(q(θ′), θ̂) + Cn(m̃n(θ′), θ̂)− h(q(θ′), θ′)

+ h(q(θ̂), θ) + Cn(m̃n(θ̂), θ)− h(q(θ̂), θ̂)− Cn(m̃n(θ̂), θ̂) ≥ 0 (40)

Comparing (40) with (38) we conclude that the incentive constraint between θ and θ′ holds if

h(q(θ′, θ) + Cn(m̃n(θ′), θ)− h(q(θ′), θ̂)− Cn(m̃n(θ′), θ̂) ≥

h(q(θ̂), θ) + Cn(m̃n(θ̂), θ)− h(q(θ̂), θ̂)− Cn(m̃n(θ̂), θ̂) (41)

Finally, observe that inequality (41) holds because hqθ > 0, q(θ′) > q(θ̂), Cnθmi ≤ 0, m̃n(θ′) <

m̃n(θ̂) and θ > θ̂. Q.E.D.

Proof of Theorem 4: First, by Theorem 3, U(θ) > 0 and hence q̃(θ) = qSB(θ) > 0 for all

θ ∈ [θ, θ̂).

Now let us demonstrate that in the optimal mechanism, q̂(θ) > 0 for all θ ∈ [θ̂, θ). Suppose,

instead, that q̂(θ) = 0 for some θ ∈ [θ̂, θ). Let us show that this implies m̂n(θ) = γn(θ) and

σ̂(θ) = 0.

Note that U ′(θ) = 0 because θ ≥ θ̂. Since hθ(0, θ) = 0, equation (15) therefore yields

Cnθ (m̂n(θ), θ) = 0. Let us show that m̂n(θ) = γn(θ) is the unique solution to this equation.

First, let us show that m̂n(θ) = γn(θ) is a solution to Cnθ (m̂n(θ), θ) = 0. Indeed, the

identity Cn(γn(θ), θ) ≡ 0 implies that
∑n

i=1C
n
mi(γ

n(θ), θ)γ′i(θ) + Cnθ (γn(θ), θ) = 0. Since

Cn(mn, θ) attains a global minimum at mn = γn(θ), it follows that Cnmi(γ
n(θ), θ) = 0 for all

i, and hence Cnθ (γn(θ), θ) = 0.

Further, to establish that m̂n(θ) = γn(θ) is the unique solution to Cnθ (m̂n(θ), θ) = 0,

consider equation (18). Since Cnmiθ < 0 for all i, we have: (i) If σ > 0, then Cnmi(m̂
n(θ), θ) > 0,

mi(θ) < γi(θ) and hence Cnθ (m̂n(θ), θ) < 0; (ii) If σ < 0, then Cnmi(m̂
n(θ), θ) < 0, mi(θ) >

γi(θ) and hence Cnθ (m̂n(θ), θ) > 0. So, if Cnθ (m̂n(θ), θ) = 0, then we must have σ̂(θ) = 0. So

from (18) it follows that Cnmiθ(m̂
n(θ), θ) = 0 for all i, from which it follows that m̂n(θ) = γn(θ).

But substituting σ̂(θ) = 0 and q̂(θ) = 0 into equation (17) then yields vq(0)−hq(0, θ) ≤ 0,

contradicting the assumption that vq(0)− hq(0, θ) > 0. So q̂(θ) > 0 for all θ ∈ [θ, θ). Q.E.D.

Proof of Theorem 5: First, we claim that σ(θ, n) converges to 0 as n→∞, uniformly in θ.

By Claim 2 of Theorem 3, σ(θ, n) ≥ 0 for all θ ∈ [θ, θ] and all n. Suppose now that contrary

to the claim, there existed δ > 0 such that for every N there exists n ≥ N and θn ∈ [θ, θ] such

that σ(θn, n) > δ. Let σ∞ be the limit of some convergent subsequence of σ(θn, n)}∞n=1. By

renumbering the indices of the subsequence, we may without loss of generality assume that
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σ(θn, n)→ σ∞ ≥ δ > 0. We will show that this leads to a contradiction, thereby establishing

the claim.

By the mean value Theorem, ∂C
n

∂mi
(mi,m

n
−i, θ)−∂Cn

∂mi
(γi(θ),m

n
−i, θ) = ∂2Cn

∂m2
i

(m̄i,m
n
−i, θ)(m̂i−

γi(θ)), for some m̄i ∈ (mi, γi). Since ∂Cn

∂mi
(γi(θ),m

n
−i, θ) = 0, it follows from (18) that

(mi(θ)− γi(θ)) = −σ(θ, n)
∂2Cn

∂θ∂mi
(mn(θ), θ)

∂2Cn

∂m2
i

(m̄i,mn
−i(θ), θ)

(42)

Using the fact that Cnθ (γn(θ), θ) = 0, and applying the mean value Theorem once more yields:

Cnθ (mn(θ), θ) =
n∑
i=1

∂2Cn

∂θ∂mi
(m̄n, θ)(mi(θ)− γi(θ)), (43)

where m̄n = γn(θ) + ε(θ)(m̂n − γn(θ)), for some ε(θ) ∈ (0, 1). Using the assumption that

0 ≤ ∂2Cn

∂m2
i
≤ v̄,

∣∣∣ ∂2Cn∂θ∂mi

∣∣∣ ≥ v > 0, (42) and (43) yields:

Cnθ (mn(θ), θ) ≤ −nσ(θ, n)
v2

v̄
(44)

Since σ(θn, n) → σ∞, we therefore have Cnθ (mn(θn), θn) → −∞. But because hθ(q, θ) is

bounded, (15) implies that U ′(θn) > 0 when n is large enough, contradicting that U ′(θ) ≤ 0

on the interval [θ, θ], and establishing the claim.

Because σ(θ, n)→ 0, the first-order conditions (17) and (18) imply that q(θ, n)→ qFB(θ)

and mi(θ, n)→ γi(θ), uniformly in θ.

Next, we argue that limn→∞ θ̂(n) = θ. Since θ̂(n) is the solution to the equation q̂(θ, n) =

q̃(θ) = qSB(θ), it follows that q(θ̂(n)) = qSB(θ̂(n)) for all n. Suppose now that contrary to the

desired result, we had limn→∞ θ̂(n) = θ for some θ ∈ (θ, θ]. Then since qSB(·) is continuous,

we would have q(θ̂(n)) → qSB(θ) < qFB(θ), contradicting that q(·, θ) converges uniformly to

qFB(·). This contradiction establishes that θ̂(n)→ θ.

It remains to show that Cn(mn(θ), θ) → 0, uniformly in θ. Since Cn(γn(θ), θ) = 0 and

Cnθ (γn(θ), θ) = 0, it follows from Taylor’s Theorem that

Cn(mn(θ), θ) =
n∑
i=1

(mi − γi(θ))2

2

∂2Cn

∂m2
i

(mn, θ) (45)

for some mn ∈ (mn(θ), γn(θ)).

By (42), |mi−γi(θ)| ≤ |σ(θ, n)| v̄v , so (45) implies Cn(mn(θ), θ) ≤ nσ2(θ, n) v̄
3

v2
. By (44) and

n|σ(θ, n)| v
2

v̄ ≤ |C
n
θ (mn(θ), θ)| ≤ max(q,θ) hθ ≡ k. Thus Cn(mn(θ), θ) ≤ k |σ(θ, n)|

(
v̄
v

)2
→ 0,

uniformly in θ. Q.E.D.
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Proof of Lemma 1: Since the solution to the principal’s problem is unique, the value function

W is continuously differentiable and

dW (n)

dn
=

∫ θ̄

θ

∂H

∂n
(q,m,U, σ, n, θ)dθ

(Seierstad and Sydsaeter (1999), p. 217). Using ∂H
∂n = −c(m(θ), θ)f(θ)− σ(θ)cθ(m(θ), θ) and

substituting for σ(θ) from the first-order condition (18) yields ∂H
∂n = f

(
−c+ cθcm

cmθ

)
, which

establishes (22). Furthermore,

d

dn

−ccmθ + cθcm
cmθ

=
∂

∂m

−ccmθ + cθcm
cmθ

∂m

∂n
=
cθ
(
c2
mθ − cmmθcm

)
c2
mθ

∂m

∂n

As shown in Theorem 5, ∂m
∂n > 0 on [θ, θ̂(n)). Since cθ < 0 it follows from the assumption

c2
mθ − cmmθcm > 0 that ∂H

∂n > 0 on [θ, θ̂(n)). Furthermore, on (θ̂(n), θ̄] we have ∂m
∂n = 0,

and hence ∂H
∂n = 0. We conclude that W ′(n) is strictly decreasing in n i.e., W (n) is strictly

concave. Q.E.D.

Proof of Lemma 2: By the definition of K and K we have Kc ≤ cmcθ
cmθ
− c ≤ Kc and so,

0 < K

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ ≤ dW (n)

dn
= G ≤ K

∫ θ̄

θ
c(m(θ), θ)f(θ)dθ.

Q.E.D.
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